2024, Number 2
Analysis of drowsiness and health habits in patients with sleep apnea using Artificial Neural Network
Language: Spanish
References: 25
Page: 188-199
PDF size: 542.64 Kb.
ABSTRACT
Obesity is one of the main risk factors for Obstructive Sleep Apnea Syndrome (OSAS), which in turn causes daytime sleepiness. Habits and lifestyles, together with sociodemographic factors, can explain the levels of sleepiness in relation to OSAS. Objective: to generate an Artificial Neural Network to identify the difference in the synaptic weights of health habits, which includes over and under intake, BMI, and sociodemographic factors, in n=140 of patients between 18-65 years of age who attended to the Sleep Disorders Clinic, UNAM, BMI ≥25 kg/m2 and with severe to moderate OSAS, treated with CPAP (continuous positive airway pressure). Method: convenience, cross-sectional, exploratory, quantitative, and explanatory study. diagnosed with moderate to severe OSAS. Results: BMI, over-eating, cravings, under-eating, and expectations for weight loss each have synaptic weights by ›60%. Of the sociodemographic variables, schooling and suffering from some comorbidity, had synaptic weights of 46% each. Conclusions: the BMI, and health behaviors, with cut-off points at risk, explain sleepiness. These findings allow us to identify, with non-linear models, the separate importance of psychological and sociodemographic variables in sleepiness in subjects with OSAS.REFERENCES
Castro, A. I., Gomez-Arbelaez, D., Crujeiras, A. B., Granero,R., Aguera, Z., Jimenez-Murcia, S., Sajoux, I., Lopez-Jaramillo,P., Fernandez-Aranda, F., & Casanueva, F. F.(2018). Effect of A Very Low-Calorie Ketogenic Diet onFood and Alcohol Cravings, Physical and Sexual Activity,Sleep Disturbances, and Quality of Life in ObesePatients. Nutrients, 10 (10), 1348. https://doi.org/10.3390/nu10101348
Duong-Quy, S., Dang Thi Mai, K., Tran Van, N., NguyenXuan Bich, H., Hua-Huy, T., Chalumeau, F…Martin, F.(2018). Étude de la prévalence du syndrome d’apnéesobstructives du sommeil au Vietnam [Study about theprevalence of the obstructive sleep apnoea syndromein Vietnam]. Revue des maladies respiratoires, 35(1), 14–24.https://doi.org/10.1016/j.rmr.2017.10.006
Eyvazlou, M., Hosseinpouri, M., Mokarami, H., Gharibi,V., Jahangiri, M., Cousins, R., Nikbakht, H. A., & Barkhordari,A. (2020). Prediction of metabolic syndromebased on sleep and work-related risk factors using anartificial neural network. BMC endocrine disorders, 20(1),169. https://doi.org/10.1186/s12902-020-00645-x
Gagliano, A., Puligheddu, M., Ronzano, N., Congiu, P., Tanca,M. G., Cursio, I., Carucci, S., Sotgiu, S., Grossi, E., &Zuddas, A. (2021). Artificial Neural Networks Analysisof polysomnographic and clinical features in PediatricAcute-Onset Neuropsychiatric Syndrome (PANS):from sleep alteration to “Brain Fog”. Nature and scienceof sleep, 13, 1209–1224. https://doi.org/10.2147/NSS.S300818
Gallego-Gómez, J. I., González-Moro, M. T. R.,González-Moro, J. M. R., Vera-Catalán, T., Balanza, S.,Simonelli-Muñoz, A. J., & Rivera-Caravaca, J. M. (2021).Relationship between sleep habits and academic performancein university Nursing students. BMC nursing,20(1), 100. https://doi.org/10.1186/s12912-021-00635-x.
Kalmbach, D. A., Cheng, P., Sangha, R., O’Brien, L. M.,Swanson, L. M., Palagini, L., Bazan, L. F., Roth, T., &Drake, C. L. (2019). Insomnia, Short Sleep, And SnoringIn Mid-To-Late Pregnancy: Disparities Related ToPoverty, Race, And Obesity. Nature and science of sleep, 11,301–315. https://doi.org/10.2147/NSS.S226291
Li, A., Quan, S. F., Silva, G. E., Perfect, M. M., & Roveda,J. M. (2018). A Novel Artificial Neural Network BasedSleep-Disordered Breathing Screening Tool. Journalof clinical sleep medicine: JCSM: official publication ofthe American Academy of Sleep Medicine, 14(6), 1063–1069.https://doi.org/10.5664/jcsm.7182
López-Meza, Elmer, Olmos-Muñoz, Adriana, Vargas-Cañas,Steven, Ramírez-Bermúdez, Jesús, López-Gómez,Mario, Corona, Teresa, & Volkers, Georgina. (2006).Somnolencia en la ciudad de México. Gaceta médicade México, 142(3), 201-203. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-38132006000300004&lng=es&tlng=e
Méndez-Peña, B. I., Murillo-Tovar, M. M., Leija-Alva, G.,Montufar Burgos, I. I., Serena-Alvarado, A., Durán-Arciniega,R. S., Pérez-Vielma, N. M., & Aguilera-Sosa, V.R. (2022). Artificial neural networks model: Neuropsychologicalvariables and their relationship with body fatpercentage in adults: Variables neuropsicológicas y surelación con el porcentaje de grasa corporal en adultos.Revista Mexicana de Trastornos Alimentarios, 12(1), 61-70.https://doi.org/10.22201/fesi.20071523e.2022.1.718
Teferra, R. A., Grant, B. J., Mindel, J. W., Siddiqi, T. A.,Iftikhar, I. H., Ajaz, F., Aliling, J. P., Khan, M. S.,Hoffmann, S. P., & Magalang, U. J. (2014). Cost minimizationusing an artificial neural network sleep apneaprediction tool for sleep studies. Annals of the AmericanThoracic Society, 11(7), 1064–1074. https://doi.org/10.1513/AnnalsATS.201404-161OC