2024, Number 3
<< Back Next >>
Otorrinolaringología 2024; 69 (3)
Effect of intratympanic treatment of brain-derived neurotrophic factor and N-acetyl cysteine on glutathione peroxidase production, audiological and histological changes in guinea pigs with amikacin-induced ototoxicity
Silva AS, Olmos ZJR, Silva MM, Cristerna SL, Rodríguez BL, González NM, Abreu CWN, Carranco HL, Contreras JB, Gaxiola GM, Romero RL
Language: Spanish
References: 30
Page: 195-208
PDF size: 591.48 Kb.
ABSTRACT
Objective: To evaluate the effect of intratympanic treatment with brain-derived neurotrophic factor embedded
in collagen sponge and simultaneous oral administration of N-acetylcysteine (NAC) with amikacin on oxidative
stress through glutathione peroxidase expression, audiological and histological changes in the cochlea of guinea
pigs with ototoxicity caused by amikacin.
Materials and Methods: Fifty-five guinea pigs were included, in 50 ototoxicity occurred due to amikacin,
they were divided into 5 groups of 10 animals each and were treated as follows: group I: without treatment,
group II: post-hearing NAC, group III: simultaneous NAC-amikacin, group IV: saline solution and group V: brainderived
neurotrophic factor. The animals were evaluated for 4 weeks with otoacoustic emissions by distortion
products. Cochlear integrity was evaluated histologically and glutathione peroxidase production was evaluated
immunohistochemically. Study was done from January 1st, 2022 to January 31, 2023.
Results: None of the animal reverted hearing loss. Histologically, groups I, II, III and IV showed severe loss
of hair cells and mild in group V. In group I glutathione peroxidase production was severe; moderate in II, III
and IV, and mild in V.
Conclusions: Simultaneous and post-hearing loss treatment for NAC and intratympanic application of
brain-derived neurotrophic factor do not prevent glutathione peroxidase production in guinea pigs with ototoxicity
caused by amikacin, but they decrease it.
REFERENCES
Maru D, Malky GA. Current practice of ototoxicity management across the United Kingdom (UK). Int J Audiol 2018; 57 (Suppl 4): S76-S88. doi: 10.1080/14992027.2018.1460495
Kros CJ, Steyger PS. Aminoglycoside- and cisplatin-induced ototoxicity: Mechanisms and otoprotective strategies.Cold Spring Harb Perspect Med 2019; 9 (11): a033548. doi: 10.1101/cshperspect.a033548
Selimoglu E. Aminoglycoside-induced ototoxicity. Curr Pharm Des 2007; 13(1): 119-26. doi:10.2174/138161207779313731
Javadi MR, Abtahi B, Gholami K, Moghadam BS, et al. The incidence of amikacin ototoxicity in multidrug-resistanttuberculosis patients. IJPR 2011; 10 (4): 905-911.
Dulon D, Mosnier I, Bouccara D. Ototoxicidad farmacológica. EMC-Otorrinolaringología. 2013; 42 (1): 1-13.doi:10.1016/S1632-3475(13)64009-6
Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, et al. Ototoxicity: Mechanisms of cochlear impairment andits prevention. Current Med Chem 2011; 18 (31): 4866-4871. doi:10.2174/092986711797535254
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: A review. Front Cell Neurosci 2017;11: 308. doi: 10.3389/fncel.2017.00308
García-Alcántara F. Combinación de resveratrol y N-acetilcisteína como prevención de la hipoacusia inducidapor kanamicina y furosemida en un modelo experimental de ototoxicidad local en ratas Wistar. Tesis doctoral.Alcalá de Henares. España. Universidad de Alcalá. 2016.
Fu X, Wan P, Li P, Wang J, et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front CellNeurosci 2021; 15: 692762. doi:10.3389/fncel.2021.692762
Hammill TL, Campbell KC. Protection for medication induced hearing loss: the state of the science, Int J Audiol2018; 57: (Sup4): S87-S95. doi: 10.1080/14992027.2018.1455114
Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. IntJ Otolaryngol 2011; 2011: 937861. doi: 10.1155/2011/937861
Blakley BW, Seaman M, Alenezi A. Brain-derived nerve growth factor in the cochlea a reproducibility study. JOtolaryngol Head Neck Surg 2020; 49 (1): 37. doi:10.1186/s40463-020-00432-7
Tardiolo G, Bramanti P, Mazzon E. Overview on the effects of N-acetylcysteine in neurodegenerative diseases.Molecules 2018; 23 (12): 3305. doi: 10.3390/molecules23123305
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanismsof action and therapeutic opportunities. Brain Behav 2014; 4 (2):108-22. doi: 10.1002/brb3.208
Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum2007; 6 (4): 308-14. doi:10.1080/14734220601142878
Abreu-Castañeda WN. Evaluación del efecto de la administración de N-acetil-cisteína sobre cambios audiométricose histológicos en cobayos tratados con dosis elevadas de amikacina. Tesis Especialidad. Ciudad de México,México. Universidad Nacional Autónoma de México. 2016.
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11 (6):1164-78. doi: 10.5114/aoms.2015.56342
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for thetreatment of blindness and deafness. Int J Nanomedicine 2015; 10: 3245-67. doi: 10.2147/IJN.S77480
Estados Unidos Mexicanos. AFÍA. Especificaciones Técnicas para la Producción, Cuidado y Uso de Animalesde Laboratorio de la Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación 6 dic, 1999.
Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: An open source plugin for the quantitative evaluationand automated scoring of immunohistochemistry images of human tissue samples. PlosOne 2014: 9: 1-11. doi:10.1371/journal.pone.0096801.e96801
Ito J, Endo T, Nakagawa T, Kita T, et al. A new method for drug application to the inner ear. ORL J OtorhinolaryngolRelat Spec 2005; 67 (5): 272-275. doi: 10.1159/000089407
Havenith S, Versnel H, Agterberg MJ, de Groot JC, et al. Spiral ganglion cell survival after round window membraneapplication of brain-derived neurotrophic factor using gelfoam as carrier. Hear Res 2011; 272 (1-2): 168-77. doi:10.1016/j.heares.2010.10.003
Salt AN, Plontke SK. Principles of local drug delivery to the inner ear. Audiol Neurootol 2009; 14 (6): 350-60.doi: 10.1159/000241892
Somdaş MA, Korkmaz F, Gürgen SG, Sagit M, Akçadağ A. N-acetylcysteine prevents Gentamicin ototoxicity in arat model. J Int Adv Otol 2015; 11: 12-8. doi: 10.5152/iao.2015.650
Kalkandelen S, Selimoğlu E, Erdoğan F, Uçüncü H, Altaş E. Comparative cochlear toxicities of streptomycin, gentamicin,amikacin and netilmicin in guinea-pigs. J Int Med Res 2002; 30 (4): 406-412. doi: 10.1177/147323000203000407
Elbana AM, Abdel-Salam S, Morad GM, Omran AA. Role of endogenous bone marrow stem cells mobilization inrepair of damaged inner ear in rats. Int J Stem Cells 2015; 8 (2): 146-154. doi: 10.15283/ijsc.2015.8.2.146
Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative stress and inflammation caused by cisplatin ototoxicity.Antioxidants (Basel) 2021; 10 (12):1919. doi: 10.3390/antiox10121919
Hachem LD, Mothe AJ, Tator CH. Effect of BDNF and other potential survival factors in models of in vitro oxidativestress on adult spinal cord–derived neural stem/progenitor cells BioResearch Open Access 2015; 1: 146-159.
Lidian A, Linder B, Anniko M, Nordang L. BDNF as otoprotectant in toxin-induced hearing loss. Acta Oto-Laryngologica 2012; 133 (1): 4-11. doi:10.3109/00016489.2012.712216
Gijalba Casado A. Mecanismos célulares y moleculares de la ototoxicidad por kanamicina y cisplatino y otoproteccióncon vitaminas antioxidants y magnesio. Tesis Doctoral, Universidad de Castilla-La Mancha. Castilla,España 2019.