2024, Number 4
Next >>
Acta Med 2024; 22 (4)
Artificial intelligence (AI) in medicine and its learning
Rodríguez WFL, Portela OJM, Enríquez BA
Language: Spanish
References: 27
Page: 261-263
PDF size: 144.78 Kb.
REFERENCES
Wu K, Wu E, Theodorou B, Liang W, Mack C, Glass L et al. Characterizing the clinical adoption of medical AI devices through U.S. insurance claims. NEJM AI. 2023; 1 (1). doi: 10.1056/AIoa2300030.
Blasiak A, Truong ATL, Remus A, Hooi L, Seah SGK, Wang P et al. The IDentif.AI-x pandemic readiness platform: rapid prioritization of optimized COVID-19 combination therapy regimens. NPJ Digit Med. 2022; 5 (1): 83. doi: 10.1038/s41746-022-00627-4.
Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine learning outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018; 7 (22): e009476. doi: 10.1161/JAHA.118.009476.
Thornton JM, Laskowski RA, Borkakoti N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat Med. 2021; 27 (10): 1666-1669. doi: 10.1038/s41591-021-01533-0.
Baker RS, Siemens G. Educational data mining and learning analytics. Learning analytics: Principles and practices, 2014; 61-75. Selwyn N. Should robots replace teachers? AI and the Future of Education. 1st ed. Cambridge UK: Polity Press; 2019. 160 p.
Doumouras AG, Engels PT. Early crisis nontechnical skill teaching in residency leads to long-term skill retention and improved performance during crises: A prospective, nonrandomized controlled study. Surgery. 2017; 162 (1): 174-181. doi: 10.1016/j.surg.2016.11.022.
Haenlein M, Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif Manage Rev. 2019; 61 (4): 5-14. doi: 10.1177/0008125619864925.
Mellado OR, Escobar AE, De MMH, Díaz-Greene EJ, Rodríguez-Weber FL. Estudio de concordancia entre el sistema Watson for Oncology y la práctica clínica en pacientes con cáncer de mama dentro del Hospital Angeles Pedregal. Acta Med. 2023; 21 (4): 338-342. doi: 10.35366/112643.
Rodríguez WFL. Valores, la medicina y la docencia. Acta Med. 2021; 19 (1): 7-8. doi: 10.35366/98562.
Pinto-Dos-Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R et al. Medical students' attitude towards artificial intelligence: a multicentre survey. Eur Radiol. 2019; 29 (4): 1640-1646. doi: 10.1007/s00330-018-5601-1.
Imran N, Jawaid M. Artificial intelligence in medical education: Are we ready for it? Pak J Med Sci. 2020; 36 (5): 857-859. doi: 10.12669/pjms.36.5.3042.
Blacketer C, Parnis R, B Franke K, Wagner M, Wang D, Tan Y et al. Medical student knowledge and critical appraisal of machine learning: a multicentre international cross-sectional study. Intern Med J. 2021; 51 (9): 1539-1542. doi: 10.1111/imj.15479.
Ganapathi S, Duggal S. Exploring the experiences and views of doctors working with Artificial Intelligence in English healthcare; a qualitative study. PLoS One. 2023; 18 (3): e0282415. doi: 10.1371/journal.pone.0282415.
Law M, Veinot P, Campbell J, Craig M, Mylopoulos M. Computing for Medicine: can we prepare medical students for the future? Acad Med. 2019; 94 (3): 353-357. doi: raf10.1097/ACM.0000000000002521.
Smith AB, Semler L, Rehman EA, Haddad ZG, Ahmadzadeh KL, Crellin SJ et al. A cross-sectional study of medical student knowledge of evidence-based medicine as measured by the Fresno Test of Evidence-Based Medicine. J Emerg Med. 2016; 50 (5): 759-764. doi: 10.1016/j.jemermed.2016.02.006.
Cullen R, Clark M, Esson R. Evidence-based information-seeking skills of junior doctors entering the workforce: an evaluation of the impact of information literacy training during pre-clinical years. Health Info Libr J. 2011; 28 (2): 119-129. doi: 10.1111/j.1471-1842.2011.00933.x
Collado-Mesa F, Alvarez E, Arheart K. The role of Artificial Intelligence in diagnostic radiology: a survey at a single Radiology residency training program. J Am Coll Radiol. 2018; 15 (12): 1753-1757. doi: 10.1016/j.jacr.2017.12.021.
Ireland J, Mouthaan M. Perspectives on curriculum design: comparing the spiral and the network models. 2020. doi: 10.17863/CAM.100405.
Wartman SA, Combs CD. Medical education must move from the information age to the age of Artificial Intelligence. Acad Med. 2018; 93 (8): 1107-1109. doi: 10.1097/ACM.0000000000002044.
Savage TR. Artificial Intelligence in medical education. Acad Med. 2021; 96 (9): 1229-1230. doi: 10.1097/ACM.0000000000004183.
Ng FYC, Thirunavukarasu AJ, Cheng H, Tan TF, Gutierrez L, Lan Y et al. Artificial intelligence education: an evidence-based medicine approach for consumers, translators, and developers. Cell Rep Med. 2023; 4 (10): 101230. doi: 10.1016/j.xcrm.2023.101230.
Dvijotham KD, Winkens J, Barsbey M, Ghaisas S, Stanforth R, Pawlowski N et al. Enhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to clinicians. Nat Med. 2023; 29 (7): 1814-1820. doi: 10.1038/s41591-023-02437-x.
Andaur-Navarro CL, Damen JAA, van Smeden M, Takada T, Nijman SWJ, Dhiman P et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol. 2023; 154: 8-22. doi: 10.1016/j.jclinepi.2022.11.015.
Andaur-Navarro CL, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J et al. Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review. BMC Med Res Methodol. 2022; 22 (1): 12. doi: 10.1186/s12874-021-01469-6.
Kohane I. Injecting Artificial Intelligence into Medicine. NEJM AI. 2023; 1 (1). doi: 10.1056/AIe2300197.
Thirunavukarasu AJ, Hassan R, Mahmood S, Sanghera R, Barzangi K, El Mukashfi M et al. Trialling a large language model (ChatGPT) in general practice with the Applied Knowledge Test: observational study demonstrating opportunities and limitations in primary care. JMIR Med Educ. 2023; 9: e46599. doi: 10.2196/46599.
Koller D, Beam A, Manrai A, Ashley E, Liu X, Gichoya J et al. Why we support and encourage the use of large language models in NEJM AI submissions. NEJM AI. 2023; 1 (1) NEJM AI. doi: 10.1056/AIe2300128.