2023, Number 1
AB“Y” of bacterial tyrosine phosphorylation: description of contributing enzymes and its impact in bacterial physiology
Language: Spanish
References: 76
Page: 1-12
PDF size: 417.31 Kb.
ABSTRACT
Protein phosphorylation in serine, threonine and tyrosine residues is a central paradigm in cell signaling. However, in prokaryotes this post-translational modification (PTM) was dismissed until last two decades. Several bacterial phosphoproteomic studies along with identification and characterization of the enzymes responsible of protein phosphorylation in these organisms, has triggered a fresh view on the research area pointing out to this PTM as an important regulatory mechanism in bacteria. Particularly, in this review we will focus on tyrosine phosphorylation, the kinases and phosphatases achieving incorporation and removal of phosphate moiety, and their mechanism of action and impact on the bacterial physiology.REFERENCES
Bechet, E., Gruszczyk, J., Terreux, R., Gueguen-Chaignon,V., Vigouroux, A., Obadia, B., Cozzone, A. J., Nessler,S. & Grangeasse, C. (2010). Identification of structuraland molecular determinants of the tyrosine-kinase Wzcand implications in capsular polysaccharide export.Mol. Microbiol., 77, 1315-1325. DOI: 10.1111/j.1365-2958.2010.07291.x
Collins, R. F., Beis, K., Clarke, B. R., Ford, R. C., Hulley,M., Naismith, J. H. & Whitfield, C. (2006). Periplasmicprotein-protein contacts in the inner membrane proteinWzc form a tetrameric complex required for the assemblyof Escherichia coli group 1 capsules. J. Biol. Chem., 281,2144-2150. DOI: 10.1074/jbc.M508078200
Derouiche, A., Shi, L., Bidnenko, V., Ventroux, M., Pigonneau,N., Franz-Wachtel, M., Kalantari, A., Nessler, S., Noirot-Gros, M. F. & Mijakovic, I. (2015). Bacillus subtilis SalAis a phosphorylation-dependent transcription regulatorthat represses scoC and activates the production of theexoprotease AprE. Mol. Microbiol., 97, 1195-1208. DOI:10.1111/mmi.13098
Ferreira, A.S., Silva, I. N., Oliveira, V. H., Becker, J. D.,Givskov, M., Ryan, R. P., Fernandes, F. & Moreira, L.M. (2013). Comparative transcriptomic analysis of theBurkholderia cepacia tyrosine kinase bceF mutant reveals arole in tolerance to stress, biofilm formation, and virulence.Appl. Environ. Microbiol., 79, 3009-3020. DOI: 10.1128/AEM.00222-13
Ghodge, S. V., Fedorov, A. A., Fedorov, E. V., Hillerich, B.,Seidel, R., Almo, S. C. & Raushel, F. M. (2013). Structuraland mechanistic characterization of L-histidinol phosphatephosphatase from the polymerase and histidinol phosphatasefamily of proteins. Biochemistry, 52, 1101-1112. DOI:10.1021/bi301496p
Hansen, A. M., Chaerkady, R., Sharma, J., Díaz-Mejía, J.J., Tyagi, N., Renuse, S., Jacob, H. K., Pinto, S. M.,Sahasrabuddhe, N. A., Kim, M. S., Delanghe, B., Srinivasan,N., Emili, A., Kaper, J. B. & Pandey, A. (2013). TheEscherichia coli phosphotyrosine proteome relates to corepathways and virulence. PLoS Pathog., 9, e1003403. DOI:10.1371/journal.ppat.1003403
Horstmann, N., Saldaña, M., Sahasrabhojane, P., Yao, H.,Su, X., Thompson, E., Koller, A. & Shelburne, S. A.,3rd (2014). Dual-site phosphorylation of the control ofvirulence regulator impacts group a streptococcal globalgene expression and pathogenesis. PLoS Pathog., 10,e1004088. DOI: 10.1371/journal.ppat.1004088
Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. (2003).Mutational analysis of the carboxy-terminal (YGX)4repeat domain of CpsD, an autophosphorylating tyrosinekinase required for capsule biosynthesis in Streptococcuspneumoniae. J. Bacteriol.,185, 3009-3019. DOI: 10.1128/JB.185.10.3009-3019.2003
Nakamoto, R., Kwan, J. M. C., Chin, J. F. L., Ong, H. T.,Flores-Kim, J., Midonet, C., Vannieuwenhze, M. S., Guan,X. L. & Sham, L. T. (2021). The bacterial tyrosine kinasesystem CpsBCD governs the length of capsule polymers.Proc. Natl. Acad. Sci. U S A, 118 (45), e2103377118. DOI:10.1073/pnas.2103377118
Nguyen, H. A., El Khoury, T., Guiral, S., Laaberki, M. H.,Candusso, M. P., Galisson, F., Foucher, A. E., Kesraoui,S., Ballut, L., Vallet, S., Orelle, C., Zucchini, L., Martin, J.,Page, A., Attieh, J., Aghajari, N., Grangeasse, C. & Jault, J.M. (2017). Expanding the Kinome World: A New ProteinKinase Family Widely Conserved in Bacteria. J. Mol. Biol.,429, 3056-3074. DOI: 10.1016/j.jmb.2017.08.016
Nourikyan, J., Kjos, M., Mercy, C., Cluzel, C., Morlot, C., Noirot-Gros, M. F., Guiral, S., Lavergne, J. P., Veening, J. W. &Grangeasse, C. (2015). Autophosphorylation of the BacterialTyrosine-Kinase CpsD Connects Capsule Synthesis with theCell Cycle in Streptococcus pneumoniae. PLoS Genet.,11,e1005518. DOI: 10.1371/journal.pgen.1005518
Olivares-Illana, V., Meyer, P., Bechet, E., Gueguen-Chaignon,V., Soulat, D., Lazereg-Riquier, S., Mijakovic, I.,Deutscher, J., Cozzone, A. J., Laprevote, O., Morera, S.,Grangeasse, C. & Nessler, S. (2008). Structural basis forthe regulation mechanism of the tyrosine kinase CapB fromStaphylococcus aureus. PLoS Biol., 6, e143. DOI: 10.1371/journal.pbio.0060143
Pelletier, A., Freton, C., Gallay, C., Trouve, J., Cluzel, C.,Franz-Wachtel, M., Macek, B., Jault, J. M., Grangeasse,C. & Guiral, S. (2019). The Tyrosine-Autokinase UbK IsRequired for Proper Cell Growth and Cell Morphology ofStreptococcus pneumoniae. Front. Microbiol.,10, 1942.DOI: 10.3389/fmicb.2019.01942
Rausch, M., Deisinger, J. P., Ulm, H., Muller, A., Li, W., Hardt,P., Wang, X., Li, X., Sylvester, M., Engeser, M., Vollmer,W., Muller, C. E., Sahl, H. G., Lee, J. C. & Schneider, T.(2019). Coordination of capsule assembly and cell wallbiosynthesis in Staphylococcus aureus. Nat. Commun., 10,1404. DOI: 10.1038/s41467-019-09356-x
Schwechheimer, C., Hebert, K., Tripathi, S., Singh, P. K., Floyd,K. A., Brown, E. R., Porcella, M. E., Osorio, J., Kiblen, J.T. M., Pagliai, F. A., Drescher, K., Rubin, S. M. & Yildiz,F. H. (2020). A tyrosine phosphoregulatory system controlsexopolysaccharide biosynthesis and biofilm formationin Vibrio cholerae. PLoS Pathog., 16, e1008745. DOI:10.1371/journal.ppat.1008745