2022, Number 1
<< Back Next >>
Rev Cubana Plant Med 2022; 27 (1)
Microwave assisted extraction to obtain the hydroalcoholic extract of Aloe vera L. (aloe)
Salomón IS, Pérez SJC, López AM
Language: Spanish
References: 17
Page:
PDF size: 254.05 Kb.
ABSTRACT
Introduction: Aloe vera L. (aloe), widely used in traditional medicine, also has antitumor and immunostimulant effects. Its leaves have polysaccharides (of recognized anticancer activity) that are used as markers of quality control of the hydroalcoholic extract (50%) with which syrup is made. Microwave-assisted extraction, compared to conventional methods, is of recognized importance for the speed and efficiency in obtaining phytoconstituents.
Objective: To define the parameters of operation, extraction time and power in obtaining the hydroalcoholic extract from dried leaves of Aloe vera L. through the energy of microwaves.
Methods: A modified Sanyo EM-T109SS domestic microwave oven was used. The study of irradiation time and power factors was carried out using a design of 32 multilevel factorial response surface. The yield of total polysaccharides determined on the basis of mannose was used as a response variable.
Results: The optimal conditions were an irradiation time of 3.1 min, a power of 696 W and for a predicted value of total polysaccharides of 2.29 %, which does not differ statistically from the experimental value. Compared to the traditional method by maceration (24 h and 1.03±0.23% yield) microwave-assisted extraction demonstrated superiority in terms of significant time savings with greater recovery of polysaccharides.
Conclusions: The results showed that microwave-assisted extraction can be used as an efficient method to obtain hydroalcoholic extract of Aloe vera L.
REFERENCES
Chan CH, Yusoff R, Ngoh GC, Kung FW. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A. 2011;1218(37):6213-25. DOI: https://doi.org/10.1016/j.chroma.2011.07.040
Chemat F, Cravotto G. Microwave-assisted extraction for bioactive compounds: Theory and practice. Food Engineering Series 4. New York: Springer Science+Business Media; 2013. DOI: https://link.springer.com/10.1007/978-1-4614-4830-3
Bagade SB, Patil M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit Rev Anal Chem. 2021;51(2):138-49. DOI: https://doi.org/10.1080/10408347.2019.1686966
Mandal V, Mohan Y, Hemalatha S. Microwave assisted extraction. An innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews. 2007;1(1):7-18. DOI: https://scialert.net/abstract/?doi=rjmp.2011.21.31
Artunduaga Antury KL, Vargas Rojas DA, Barrera Bermeo M. Conservación de las propiedades nutraceúticas del aloe vera (Aloe Barbadensis Miller), mediante técnicas de secado. Ingeniería y Región. 2021 [acceso: 03/01/2022];25:6-21. Disponible en: https://journalusco.edu.co/index.php/iregion/article/view/2818
In YP, Ki SL. New perspectives on aloe. New York: Springer Science+Business Media. 2006. DOI: https://link.springer.com/10.1007/978-0-387-34636-6_6
Pérez JC. Extracción asistida por microondas de los lípidos de las semillas de Cucurbita pepo L. [Tesis de curso]. La Habana: Universidad de La Habana, Facultad de Química; 2012.
Yaron, A. Characterization of Aloe vera gel before and after autodegredation and stabilization of the natural fresh gel. Phytotherapy Research. 1993;7:11-3. DOI: https://doi.org/10.1002/ptr.2650070706
Azaroual L, Liazid A, Mansouri FE, Brigui J, Ruíz A, Barbero GF. Optimization of the microwave assisted extraction of simple phenolic compounds from grape skins and seeds. Agronomy. 2021;11(8):1527. DOI: https://doi.org/10.3390/agronomy11081527
Le B, Golokhvast KS, Yang SH, Sun S. Optimization of microwave assisted extraction ofpPolysaccharides from Ulva pertusa and evaluation of their ntioxidant Activity. Antioxidants (Basel). 2019;8(5):129. DOI: https://doi.org/10.3390/antiox8050129
Tirado V. An overview on the use of response surface methodology to model and optimize extraction processes in the food industry. Curr Res Nutr Food Sci. 2021;9(3). DOI: http://dx.doi.org/10.12944/CRNFSJ.9.3.03
Aourach M. Optimization and comparison of ultrasound and microwave assisted extraction of phenolic compounds from cotton lavender (Santolina chamaecyparissus L.). Agronomy. 2021;11(1):84. DOI: https://doi.org/10.3390/agronomy11010084
Prakash JM, Manikandan S. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntiaficus-indica) fruit. Dye Pigm. 2012;95:465-72. DOI: https://doi.org/10.1016/j.dyepig.2012.06.007
Prakash JM, Nivetha CV, Priya B, Al-Dhabi NA, Ponmurugan K, Blessing JJ. Modeling of polysaccharide extraction from Gossypium arboreum L. seed using central composite rotatable design. Internat J Biological Macromolecules. 2016;23-49. DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.094
Zhao B, Zhang J, Guo X, Wang J. Microwave assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. unicolor salisb and its antioxidant activities evaluation. Food Hydrocolloids. 2013;31:346-56. DOI: https://doi.org/10.1016/j.foodhyd.2012.11.021
Chen C, Shao Y, Tao Y, Wen H. Optimization of dynamic microwave assisted extraction of armillaria polysaccharides using RSM, and their biological activity. LWT Food Sci Technol. 2015;64 (2):1263-9. DOI: https://doi.org/10.1016/j.lwt.2015.07.009
Japón R, Luque JM, Luque MD. Multivariate optimisation of the microwave assisted extraction of oleuropein and related biophenols from olive leaves. Anal Bioanal Chem. 2006;385:753-9. DOI: https://link.springer.com/10.1007/s00216-006-0419-0