2022, Number 2
<< Back Next >>
Revista Cubana de Informática Médica 2022; 14 (2)
Fusion of multimodal neuroscience data generated in EEG-fMRI studies, a thematic analysis
de la Cruz OW, Orellana GA, Fuentes GJE
Language: Spanish
References: 57
Page:
PDF size: 342.13 Kb.
ABSTRACT
Brain activity has multiple attributes, including electrical, metabolic, hemodynamic, and hormonal. Modern methods for studying brain functions such as PET (Positron Emission Tomography), fMRI (Functional Magnetic Resonance Imaging), and MEG (Magnetoencephalogram) are widely used by scientists. However, the EEG is a tool used for research and diagnosis due to its low cost, simplicity of use, mobility and the possibility of long-term monitoring of acquisition. To detect and interpret the relevant characteristics of these signals, each process is described by its temporal (EEG) and spatial (fMRI) scale. The present research focuses on conducting a bibliographic review on the integration of multimodal EEG-fMRI data that favors assessing its importance for the development of fusion algorithms and their use in the Cuban context. For this, documents with high rates of citations in the literature were analyzed, where precursor authors of the topics under analysis stand out. Multimodal EEG-fMRI studies generate multiple temporal and spatial data with high value for evidence-based medicine. Their integration provides added value in the search for new diagnostic methods, applying data mining, Deep learning and fusion algorithms. This work highlights the existence of low temporal resolution of fMRI and, on the other hand, the low spatial resolution of EEG, so the integration of both studies would increase the quality of their information.
REFERENCES
Huang H K. PACS and imaging informatics: basic principles and applications. 2nd ed. Hoboken N J: Wiley-Blackwell. 2010. ISBN 978-0-470-37372-9.
López J. Técnicas avanzadas de reconstrucción de imagen nuclear PET, x-CT y SPECT. Facultad de Ciencias Físicas: Departamento de Física Atómica, Molecular y Nuclear. junio 2008. Universidad Complutense de Madrid.
Li Q, Liu G, Wei D, Liu Y, Yuan G, Wang G. Distinct neuronal entrainment to beat and meter: Revealed by simultaneous EEG-fMRI. Neuroimage. 2019 Jul 1;194:128-135. doi: 10.1016/j.neuroimage.2019.03.039.
Abreu R, Leal A, Figueiredo P. EEg-informed fmri: a review of data analysis methods. Front. Hum. Neurosci.2018. 12:29. doi: 10.3389/fnhum.2018.00029
Caballero-Gaudes C, Reynolds R. Methods for cleaning the bold fmri signal. NeuroImage. 2017. 154:128-149. [cited 2022 Jul 20].Available from: doi.org/10.1016/j.neuroimage.2016.12.018
Mele G, Cavaliere C, Alfano V, Orsini M, Salvatore M, Aiello M. (2019). Simultaneous EEG-fMRI for functional neurological assessment. Front. Neurol., 13 August 2019.Sec. Applied Neuroimaging. [cited 2022 Jul 20]. Available from: https://doi.org/10.3389/fneur.2019.00848
Niazy R, Beckmann C, Iannetti G, Brady J, Smith S. Removal of fMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005. 28: 720-737. [cited 2022 Jul 20].Available from: https://doi.org/10.1016/j.neuroimage.2005.06.067
Ihalainen T, Kuusela L, Turunen S, Heikkinen S, Savolainen S, Sipilä O. Data quality in fMRI and simultaneous EEG-fMRI.Magn. Reson.Mater. Phys. Biol. Med. 2015. 28:23-31. [cited 2022 Jul 20].Available from: https://doi.org/10.1007/s10334-014-0443-6
Wirsich J, Amico E, Giraud A L, Goñi J, Sadaghiani S (2020). Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition. Network Neuroscience, 4:3, 658-677.
Triantafyllou C, Hoge R, Krueger G, Wiggins C, Potthast A, Wiggins G, et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage. 2005. 26:243-250. [cited 2022 Jul 20]. Available from: https://doi.org/10.1016/j.neuroimage.2005.01.007
Ives J R, Warach S, Schmitt F, Edelman RR, Schomer D L. Monitoring the patient's EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol. 1993. 87:417-420.
Patel MR, Blum A, Pearlman JD, Yousuf N, Ives JR, Saeteng S, Schomer DL, Edelman RR, 1999. Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring. AJNR Am J. Neuroradiol. 20, 1916-1919.
Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, Edelman RR, Schomer DL. EEG-triggered echo-planar functional MRI in epilepsy. Neurology. 1997. 47:89-93.
Benítez Aldás MR. (2018). Estudio y análisis de métodos para la extracción de características y clasificación de emociones basados en EEG (Master's thesis).
Wang T, Mantini D, Gillebert CR. The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex. 2017. 107:148-165. [cited 2022 Jul 20]. Available from: https://doi.org/10.1016/j.cortex.2017.09.006.
Thibault RT, MacPherson A, Lifshitz M, Roth RR, Raz A. Neurofeedback with fMRI: a critical systematic review. Neuroimage. 2018. 172:786-807. [cited 2020 Dec 20]. Available from: https://doi.org/10.1016/j.neuroimage.2017.12.071
Sanmartino F, González-Rosa J. (2020). Aplicaciones de la neurofisiología cognitiva y la estimulación cerebral no invasiva al estudio del lenguaje.
Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, Dubeau F, Gotman J. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage. 2008. 39:755-774.
Tejero L. (2018). Definición de un flujo de trabajo para el desarrollo de modelos computacionales personalizados del cerebro.
Tagliazucchi E, Laufs H. Multimodal imaging of dynamic functional connectivity. Front. Neurol. 2015. 6:10. [cited 2022 Jul 20].Available from: https://doi.org/10.3389/fneur.2015.00010
Kruggel F, Wiggins CJ, Herrmann CS, von Cramon DY. Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength. Magn. Reson. Med. 2000. 44:277-282.
Marino M, Medaglia MT, Liu Q, Mantini D, Porcaro C. . Test di robustezza della dimensione frattale nel differenziare le reti cerebrali cognitive superiori (HCFNs) e percettive (PNs). Sistemi intelligenti,2020, 32(3), 597-621.
Cichy RM, Oliva A. AM/EEG-fMRI fusion primer: resolving human brain responses in space and time. Neuron. 2020
Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 2017. 18:86-100. [cited 2022 Jul 20].Available from: https://doi.org/10.1038/nrn.2016.164
Mandelkow H, Brandeis D, Boesiger P. Good practices in EEG-MRI: the utility of retrospective synchronization and PCA for the removal of MRI gradient artefacts. Neuroimage. 2010. 49:2287-2303.
Müller-Bardorff M, Bruchmann M, Mothes-Lasch M, Zwitserlood P, Schlossmacher I, Hofmann D, Straube T. Early brain responses to affective faces: a simultaneous EEG-fMRI study. NeuroImage, 2018, 178, 660-667.
Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage. 2009. 44:1224-1238.
Dong L, Luo C, Liu X, Jiang S, Li F, Feng H, Yao D. . Neuroscience information toolbox: An open source toolbox for EEG-fMRI multimodal fusion analysis. Frontiers in Neuroinformatics, 2018,12, 56.
Philiastides MG, Tu T,Sajda P. Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI. Annual Review of Neuroscience,2021, 44.
De Martino F, de Borst AW, Valente G, Goebel R Formisano. Predicting EEG single trial responses with simultaneous fMRI and Relevance Vector Machine regression. Neuroimage. 2011. 56: 826-836.
Ebrahimzadeh E, Shams M, Jounghani AR, Fayaz F, Mirbagheri M, Hakimi N, Soltanian-Zadeh H. Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method. Cognitive Neurodynamics,2021, 15:2, 207-222.
Morillon Lehongre K, Frackowiak RS, Ducorps A, Kleinschmidt A, Poeppel D, Giraud AL. Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl. Acad. Sci. U. S. A. 2010. 107:18688-18693.
Perronnet L, Lécuyer A, Mano M, Clerc M, Lotte F, Barillot C. Learning 2-in-1: towards integrated EEG-fMRI-neurofeedback. bioRxiv. 2018. [cited 2022 Jul 20].Available from: https://doi.org/10.1101/397729
Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. U. S. A. 2010. 107:10238-10243.
Hao Y, Khoo HM, von Ellenrieder N, Zazubovits N, Gotman J. DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning. NeuroImage: Clinical, 2018, 17, 962-975.
Carmichael DW, Thornton JS, Rodionov R, Thornton R, McEvoy AW, Ordidge RJ, Allen PJ, Lemieux L. Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study. Neuroimage, 2010. 49:379-390.
Carmichael D, Vulliemoz S, Rodionov R, Walke M, Rosenkranz K, McEvoy A,Lemieux L. Simultaneous Intracranial EEG-fMRI in Humans Suggests that High Gamma Frequencies are the Closest Neurophysiological Correlate of BOLD fMRI. 19th Scientific Meeting of the ISMRM. Book of Abstracts, Montréal. 2011. p. 107.
Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks Jr W J, Moro E, Vitek JL, Weaver FM, Gross RE, DeLong MR Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 2011. 68:165.
Holtzheimer PE, Mayberg HS. Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 2011. 34:289-307.
Kowalczyk MA, Omidvarnia A, Abbott DF, Tailby C, Vaughan DN, Jackson GD. Clinical benefit of presurgical EEG‐fMRI in difficult‐to‐localize focal epilepsy: A single‐institution retrospective review. Epilepsia,2020, 61:1, 49-60.
41 . Li F, Tao Q, Peng W, Zhang T, Si Y, Zhang Y, Xu P. Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting-to task-state: evidence from a simultaneous event-related EEG-fMRI study. NeuroImage, 2020, 205, 116285.
Gupte AA, Shrivastava D, Spaniol MA, Abosch A. MRI-related heating near deep brain stimulation electrodes: more data are needed. Stereotact. Funct. Neurosurg. 2011. 89:131-140.
43 . Shamshiri EA, Sheybani L, Vulliemoz S. The role of EEG-fMRI in studying cognitive network alterations in epilepsy. Frontiers in neurology, 2019, 10, 1033.
Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage. 2009. 45:S199 -S209.
Mennes M, Wouters H, Vanrumste B, Lagae L, Stiers P. Validation of ICA as a tool to remove eye movement artifacts from EEG/ ERP. Psychophysiology. 2010. 47:1142-1150.
Joel SE, Caffo BS, van Zijl PCM, Pekar JJ. On the relationship between seed-based and ICA-based measures of functional connectivity. Magn Reson Med. 2011. 66(3):644-657.
He Y, Steines M, Sommer J, Gebhardt H, Nagels A, Sammer G, Straube B. Spatial-temporal dynamics of gesture-speech integration: a simultaneous EEG-fMRI study. Brain Structure and Function,2018, 223:7, 3073-3089.
Haynes JD. Decoding visual consciousness from human brain signals. Trends Cogn Sci. 2009. 13:194 -202.
Murta T, Leite M, Carmichael DW, Figueiredo P, Lemieux L. Electrophysiological correlates of the bold signal for eeg-informed fmri. Hum. Brain Mapp. 2015. 36:391-414. Disponible en: https://doi.org/10.1002/hbm.22623
Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000. 13:411- 430.
Calhoun VD, Adali T, Pearlson GD, Kiehl KA. Neuronal chronometry of target detection: fusion of hemodynamic and event related potential data. Neuroimage. 2006. 30:544 -553.
Mijovic B, Vanderperren K, Novitskiy N, Vanrumste B, Stiers P, Van den Bergh B, Lagae L, Sunaert S, Wagemans J, Van Huffel S, De Vos M. The “why” and “how” of JointICA: results from a visual detection task. Neuroimage. 2012. 60:1171-1185.
Ebrahimzadeh E, Shams M, Fayaz F, Rajabion L, Mirbagheri M, Araabi B N, Soltanian-Zadeh H. Quantitative determination of concordance in localizing epileptic focus by component-based EEG-fMRI. Computer methods and programs in biomedicine,2019, 177, 231-241.
Scrivener CL.When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI. Frontiers in Neuroscience,2021, 15, 774.
Ragazzoni A, Di Russo F, Fabbri S, Pesaresi I, Di Rollo A, Perri RL, Sartucci F. “Hit the missing stimulus”. A simultaneous EEG-fMRI study to localize the generators of endogenous ERPs in an omitted target paradigm. Scientific reports,2019, 9:1, 1-15.
De Martino F, Valente G, de Borst AW, Esposito F, Roebroeck A, Goebel R, Formisano E. Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI. Magn Reson Imaging. 2010. 28:1104 -1112.
Sui J, Adali T, Yu Q, Chen J, Calhoun VD. A review of multivariate methods for multimodal fusion of brain imaging data. J Neuro-sci Methods. 2012. 204:68-81.