2024, Number 2
A review of experimental studies on hepatotoxicity related to acrylamide exposure
Language: Spanish
References: 49
Page: 35-46
PDF size: 440.80 Kb.
ABSTRACT
Introduction: Acrylamide is a toxic compound that can be formed in foods prepared at high temperatures; chronic exposure to it causes neurotoxicity, genotoxicity, and it is consider as a potential carcinogenic. Liver is the main organ that metabolizes acrylamide and there, acrylamide and its metabolites can cause damage and chronic inflammation that might trigger serious pathologies.Objective: To analyze the most recent information regarding hepatotoxicity associated with the ingestion of acrylamide.
Material and method: A journal search was conducted in PubMed, ScienceDirect and Google Scholar, using MeSH terms: liver, toxicity, acrylamide, oxidative stress, Wistar Rat and Booleans: “and”, “or”, “not”, and considering articles from 2018, selecting those that described in its content data related keywords.
Results: Hepatotoxicity due to exposure to acrylamide is related to alterations in oxidative stress biomarkers, changes in metabolomics and autophagy processes, inflammasome activation, and stereological and histological modifications.
Conclusion: The updated information in the available literature demonstrates that hepatotoxicity associated with acrylamide consumption is underlain by various cellular mechanisms in which oxidative stress is generally involved, therefore the approach to develop strategies to understand and reduce the impact of exposure must consider these aspects.
REFERENCES
Benford, D., Ceccatelli, S., Cottrill, B., DiNovi, M.,Dogliotti, E., Edler, L., Farmer, P., Fürst, P.,Hoogenboom, L., Katrine Knutsen, H., Lundebye, A.-K., Metzler, M., Mutti, A., Schouten, L. J., Schrenk,D., & Vleminckx, C. (2015). Scientific Opinion onacrylamide in food. EFSA Journal, 13(6), 4104.https://doi.org/10.2903/J.EFSA.2015.4104
Bo, N., Yilin, H., Chaoyue, Y., Lu, L., & Yuan, Y. (2020).Acrylamide induces NLRP3 inflammasome activationvia oxidative stress- and endoplasmic reticulum stressmediated MAPK pathway in HepG2 cells. Food andChemical Toxicology: An International JournalPublished for the British Industrial BiologicalResearch Association, 145.https://doi.org/10.1016/J.FCT.2020.111679
Cao, C., Shi, H., Zhang, M., Bo, L., Hu, L., Li, S., Chen,S., Jia, S., Liu, Y. J., Liu, Y. L., Zhao, X., & Zhang, L.(2018). Metabonomic analysis of toxic action of longtermlow-level exposure to acrylamide in rat serum.Human & Experimental Toxicology, 37(12), 1282–1292. https://doi.org/10.1177/0960327118769708
Centurión, J. R., Galeano, A. K., Kennedy, M. L.,Campuzano-Bublitz, M. A., Centurión, J. R., Galeano,A. K., Kennedy, M. L., & Campuzano-Bublitz, M. A.(2022). Modelos murinos utilizados en la investigaciónde la Diabetes mellitus. Revista CON-CIENCIA, 10(2),53–68.https://doi.org/10.53287/EEEH2318FN45V
Dasari, S., Gonuguntla, S., Yellanurkonda, P., Nagarajan,P., & Meriga, B. (2019). Sensitivity of glutathione Stransferasesto high doses of acrylamide in albinowistar rats: Affinity purification, biochemicalcharacterization and expression analysis.Ecotoxicology and Environmental Safety, 182, 109416.https://doi.org/10.1016/J.ECOENV.2019.109416
Dasari, S., Ganjayi, M. S., Gonuguntla, S., Kothapalli, S.R., Konda, P. Y., Basha, S. K. M., Peera, K., & Meriga,B. (2018). Evaluation of biomarkers distress inAcrylamide-Induced hepatic and nephrotoxicity ofalbino wistar Rat. Advances in Animal and VeterinarySciences, 6(10).https://doi.org/10.17582/journal.aavs/2018/6.10.427.435
Deng, L., Zhao, M., Cui, Y., Xia, Q., Jiang, L., Yin, H., &Zhao, L. (2022). Acrylamide induces intrinsicapoptosis and inhibits protective autophagy via theROS mediated mitochondrial dysfunction pathway inU87-MG cells. Drug and chemical toxicology, 45(6),2601–2612.https://doi.org/10.1080/01480545.2021.1979030
Farromeque Vásquez, S. (2022). Rol del estrés del retículoendoplasmático, estrés oxidativo y la respuestainflamatoria en la disfunción de las células βpancreáticas inducida por dieta rica en fructosa: suposible prevención con agentes antioxidantes ychaperonas químicas.http://sedici.unlp.edu.ar/handle/10915/145702
Galuch, M. B., Magon, T. F. S., Silveira, R., Nicácio, A.E., Pizzo, J. S., Bonafe, E. G., Maldaner, L., Santos, O.O., & Visentainer, J. V. (2019). Determination ofacrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultraperformanceliquid chromatography tandem massspectrometry (UPLC-MS/MS). Food Chemistry, 282,120–126.https://doi.org/10.1016/J.FOODCHEM.2018.12.114
1740.https://doi.org/10.1161/CIRCRESAHA.118.31136217. Hölzl-Armstrong, L., Kucab, J. E., Moody, S., Zwart, E.P., Loutkotová, L., Duffy, V., Luijten, M., Gamboa daCosta, G., Stratton, M. R., Phillips, D. H., & Arlt, V.M. (2020). Mutagenicity of acrylamide andglycidamide in human TP53 knock-in (Hupki) mouseembryo fibroblasts. Archives of toxicology, 94(12),4173–4196.https://doi.org/10.1007/S00204-020-02878-0
Karimani, A., Hosseinzadeh, H., Mehri, S., Jafarian, A. H.,Kamali, S. A., Hooshang Mohammadpour, A., &Karimi, G. (2019). Histopathological and biochemicalalterations in non-diabetic and diabetic rats followingacrylamide treatment. Toxin Reviews 40(3), 277–284.https://doi.org/10.1080/15569543.2019.1566263
Karimi, M. Y., Fatemi, I., Kalantari, H., Mombeini, M. A.,Mehrzadi, S., & Goudarzi, M. (2020). Ellagic AcidPrevents Oxidative Stress, Inflammation, andHistopathological Alterations in Acrylamide-InducedHepatotoxicity in Wistar Rats. Journal of DietarySupplements, 17(6), 651–662.https://doi.org/10.1080/19390211.2019.1634175
Markovic Filipovic, J., Miler, M., Kojić, D., Karan, J.,Ivelja, I., Kokoris, J. Č., & Matavulj, M. (2022a).Effect of Acrylamide Treatment on Cyp2e1 Expressionand Redox Status in Rat Hepatocytes. InternationalJournal of Molecular Sciences 2022, Vol. 23, Page6062, 23(11), 6062.https://doi.org/10.3390/IJMS23116062
Markovic Filipovic, J., Miler, M., Kojic, D., Visnjic, B. A.,Milosevic, V., Kokoris, J. C., Dordevic, M., &Matavulj, M. (2022b). Adult Rat Liver AfterSubchronic Acrylamide Treatment: Histological,Stereological and Biochemical Study. InternationalJournal of Morphology, 40(6), 1618–1623.https://doi.org/10.4067/S0717-95022022000601618
Mehri, S., Abnous, K., Khooei, A., Mousavi, S. H.,Shariaty, V. M., & Hosseinzadeh, H. (2015). Crocinreduced acrylamide-induced neurotoxicity in Wistarrat through inhibition of oxidative stress. IranianJournal of Basic Medical Sciences, 18(9), 902.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620190/
Nematollahi, A., Kamankesh, M., Hosseini, H., Ghasemi,J., Hosseini-Esfahani, F., & Mohammadi, A. (2019).Investigation and determination of acrylamide in themain group of cereal products using advancedmicroextraction method coupled with gaschromatography-mass spectrometry. Journal of CerealScience, 87, 157–164.https://doi.org/10.1016/J.JCS.2019.03.019
Ozturk, I., Elbe, H., Bicer, Y., Karayakali, M., Onal, M. O.,& Altinoz, E. (2023). Therapeutic role of melatonin onacrylamide-induced hepatotoxicity in pinealectomizedrats: Effects on oxidative stress, NF-κB signalingpathway, and hepatocellular proliferation. Food andChemical Toxicology, 174, 113658.https://doi.org/10.1016/J.FCT.2023.113658
Rivadeneyra-Domínguez, E., Becerra-Contreras, Y.,Vázquez-Luna, A., Díaz-Sobac, R., & Rodríguez-Landa, J. F. (2018). Alterations of blood chemistry,hepatic and renal function, and blood cytometry inacrylamide-treated rats. Toxicology Reports, 5, 1124–1128. https://doi.org/10.1016/J.TOXREP.2018.11.006
Sánchez-Otero, M. G., Méndez-Santiago, C. N., Luna-Vázquez, F., Soto-Rodríguez, I., García, H. S., &Serrano-Niño, J. C. (2017). Assessment of the DietaryIntake of Acrylamide by Young Adults in Mexico.Journal of Food and Nutrition Research, Vol. 5, 2017,Pages 894-899, 5(12), 894–899.https://doi.org/10.12691/JFNR-5-12-3
Uthra, C., Reshi, M. S., Jaswal, A., Yadav, D., Shrivastava,S., Sinha, N., & Shukla, S. (2022). Protective efficacyof rutin against acrylamide-induced oxidative stress,biochemical alterations and histopathological lesionsin rats. Toxicology research, 11(1), 215–225.https://doi.org/10.1093/TOXRES/TFAB125
Wang, S. Y., Han, D., Pan, Y. L., Yu, C. P., Zhou, X. R.,Xin, R., Wang, R., Ma, W. W., Wang, C., & Wu, Y. H.(2020). A urinary metabolomic study from subjectsafter long-term occupational exposure to lowconcentration acrylamide using UPLC-QTOF/MS.Archives of Biochemistry and Biophysics, 681, 108279.https://doi.org/10.1016/J.ABB.2020.108279
Zamani, E., Shaki, F., AbedianKenari, S., & Shokrzadeh,M. (2017). Acrylamide induces immunotoxicitythrough reactive oxygen species production andcaspase-dependent apoptosis in mice splenocytes viathe mitochondria-dependent signaling pathways.Biomedicine & Pharmacotherapy, 94, 523–530.https://doi.org/10.1016/j.biopha.2017.07.033