2024, Number 4
<< Back Next >>
Rev Mex Anest 2024; 47 (4)
Artificial intelligence, the new tool in perioperative medicine and postoperative pain management
Verdugo-Velázquez FF, Hernández-Badillo LE, Reyes-Rojas JE, Garduño-López AL
Language: Spanish
References: 35
Page: 291-295
PDF size: 287.82 Kb.
ABSTRACT
Throughout history, science and technology have become allies in the area of healthcare. We are in a new era where the development of artificial intelligence (AI) and its application in medicine can improve the decision making of healthcare professionals to reduce risks, based on tools such as predictive algorithms or artificial neural networks. The application of artificial intelligence is part of both the present and the future of anesthesiology and perioperative medicine, being a useful tool for the anesthesiologist. This article focuses on the application of AI for the creation of algorithms, as well as its potential to revolutionize clinical practice in the management of post-surgical pain.
REFERENCES
Maheshwari K, Cywinski JB, Papay F, Khanna AK, Mathur P. Artificial intelligence for perioperative medicine: perioperative intelligence. Anesth Analg. 2023;136:637-645. Available in: http://dx.doi.org/10.1213/ane.0000000000005952
Cascella M, Tracey MC, Petrucci E, Bignami EG. Exploring artificial intelligence in anesthesia: a primer on ethics, and clinical applications. Surgeries (Basel). 2023;4:264-274. Available in: http://dx.doi.org/10.3390/surgeries4020027
Lanzagorta-Ortega D, Carrillo-Pérez DL, Carrillo-Esper R. Inteligencia artificial en medicina: presente y futuro. Gac Med Mex. 2022;158:17-21. Available in: http://dx.doi.org/10.24875/gmm.m22000688
Yoon H-K, Yang H-L, Jung C-W, Lee H-C. Artificial intelligence in perioperative medicine: a narrative review. Korean J Anesthesiol. 2022;75:202-215. Available in: http://dx.doi.org/10.4097/kja.22157
Hatib F, Jian Z, Buddi S, Lee C, Settels J, Sibert K, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663-674. Available in: http://dx.doi.org/10.1097/aln.0000000000002300
Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, et al. Machine Learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain. 2019;160:550-560. Available in: http://dx.doi.org/10.1097/j.pain.0000000000001417
Misi? VV, Gabel E, Hofer I, Rajaram K, Mahajan A. Machine Learning prediction of postoperative emergency department hospital readmission. Anesthesiology. 2020;132:968-980. Available in: http://dx.doi.org/10.1097/aln.0000000000003140
Wang Y, Zhu Y, Xue Q, Ji M, Tong J, Yang J-J, et al. Predicting chronic pain in postoperative breast cancer patients with multiple Machine Learning and Deep Learning models. J Clin Anesth. 2021;74:110423. Available in: http://dx.doi.org/10.1016/j.jclinane.2021.110423
Hsiao F-J, Chen W-T, Pan L-LH, Liu H-Y, Wang Y-F, Chen S-P, et al. Machine Learning–based prediction of heat pain sensitivity by using resting-state EEG. Front Biosci (Landmark Ed). 2021;26:1537-1547. Available in: http://dx.doi.org/10.52586/5047
Huang L, Chen X, Liu W, Shih P-C, Bao J. Automatic surgery and anesthesia emergence duration prediction using artificial neural networks. J Healthc Eng. 2022;2022:1-17. Available in: http://dx.doi.org/10.1155/2022/2921775
Persson I, Grünwald A, Morvan L, Becedas D, Arlbrandt M. A Machine Learning algorithm predicting acute kidney injury in intensive care unit patients (NAVOY Acute Kidney Injury): proof-of-concept study. JMIR Form Res. 2023;7:e45979. Available in: http://dx.doi.org/10.2196/45979
Bellini V, Valente M, Gaddi AV, Pelosi P, Bignami E. Artificial intelligence and telemedicine in anesthesia: potential and problems. Minerva Anestesiol. 2022;88:729-734. Available in: http://dx.doi.org/10.23736/s0375-9393.21.16241-8
Bellini V, Valente M, Bertorelli G, Pifferi B, Craca M, Mordonini M, et al. Machine Learning in perioperative medicine: a systematic review. J Anesth Analg Crit Care. 2022;2:2. Available in: http://dx.doi.org/10.1186/s44158-022-00033-y
Batko K, Slezak A. The use of big data analytics in healthcare. J Big Data. 2022;9:3. Available in: http://dx.doi.org/10.1186/s40537-021-00553-4
Rothaug J, Zaslansky R, Schwenkglenks M, Komann M, Allvin R, Backström R, et al. Patients' perception of postoperative pain management: Validation of the international pain outcomes (IPO) questionnaire. J Pain. 2013;14:1361-1370. Available in: http://dx.doi.org/10.1016/j.jpain.2013.05.016
Müller-Wirtz LM, Volk T. Big data in studying acute pain and regional anesthesia. J Clin Med. 2021;10:1425. Available in: https://doi.org/10.3390/jcm10071425
Wall J, Dhesi J, Snowden C, Swart M. Perioperative medicine. Future Healthcare J. 2022;9:138-143. Available in: http://dx.doi.org/10.7861/fhj.2022-0051
Gkikas S, Tsiknakis M. Automatic assessment of pain based on Deep Learning methods: a systematic review. Comput Methods Programs Biomed. 2023;231:107365. Available in: http://dx.doi.org/10.1016/j.cmpb.2023.107365
Semwal A, Londhe ND. Automated pain severity detection using convolutional neural network. In: 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS). IEEE; 2018.
Lee H-C, Ryu H-G, Chung E-J, Jung C-W. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil. Anesthesiology. 2018;128:492-501. Available in: http://dx.doi.org/10.1097/aln.0000000000001892
Salekin MS, Zamzmi G, Goldgof D, Kasturi R, Ho T, Sun Y. Multimodal spatio-temporal Deep Learning approach for neonatal postoperative pain assessment. Comput Biol Med. 2021;129:104150. Available in: http://dx.doi.org/10.1016/j.compbiomed.2020.104150
Wang R, Xu K, Feng H, Chen W. Hybrid RNN-ANN based deep physiological network for pain recognition. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2020.
Zhi R, Zhou C, Yu J, Li T, Zamzmi G. Multimodal-based stream integrated neural networks for pain assessment. IEICE Trans Inf Syst. 2021;E104.D:2184-294. Available in: http://dx.doi.org/10.1587/transinf.2021edp7065
Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep Learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51:363-373. Available in: http://dx.doi.org/10.1007/s00256-021-03773-0
Liu Y-L, Lin C-S, Cheng C-C, Lin C. A Deep Learning algorithm for detecting acute pericarditis by electrocardiogram. J Pers Med. 2022;12:1150. Available in: http://dx.doi.org/10.3390/jpm12071150
Yoon H, Bak MS, Kim SH, Lee JH, Chung G, Kim SJ, et al. Development of a spontaneous pain indicator based on brain cellular calcium using Deep Learning. Exp Mol Med. 2022;54:1179-1187. Available in: http://dx.doi.org/10.1038/s12276-022-00828-7
Fang J, Wu W, Liu J, Zhang S. Deep Learning–guided postoperative pain assessment in children. Pain. 2023;164:2029-2035. Disponible en: http://dx.doi.org/10.1097/j.pain.0000000000002900
Fontaine D, Vielzeuf V, Genestier P, Limeux P, Santucci-Sivilotto S, Mory E, et al. Artificial intelligence to evaluate postoperative pain based on facial expression recognition. Eur J Pain. 2022;26:1282-1291. Available in: http://dx.doi.org/10.1002/ejp.1948
Pinzon-Arenas JO, Kong Y, Chon KH, Posada-Quintero HF. Design and evaluation of Deep Learning models for continuous acute pain detection based on phasic electrodermal activity. IEEE J Biomed Health Inform. 2023;27:4250-4260. Available in: http://dx.doi.org/10.1109/jbhi.2023.3291955
Melzack R, Katz J. Pain assessment in adult patients. In: McMahon SB, Koltzenburg M, Tracey I, Turk D, editors. Wall and Melzack textbook of pain. Elsevier Saunders; 2013. pp. 301-314.
Apfelbaum JL, Chen C, Mehta SS, Gan TJ. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg. 2003;97:534-540. doi: 10.1213/01.Ane.0000068822.10113.9e
Park I, Park JH, Yoon J, Song IA, Na HS, Ryu JH, Oh AY. Artificial intelligence model predicting postoperative pain using facial expressions: a pilot study. J Clin Monit Comput. 2024;38:261-270. doi: 10.1007/s10877-023-01100-7.
Ekman P, Friesen WV. Measuring facial movement. Environ Psychol Nonverbal Behav. 1976;1:56-75. doi: 10.1007/BF01115465.
Balavenkatasubramanian J, Kumar S, Sanjayan RD. Artificial intelligence in regional anaesthesia. Indian J Anaesth. 2024;68:100-104. Available in: http://dx.doi.org/10.4103/ija.ija_1274_23
Bowness J, Varsou O, Turbitt L, Burkett-St Laurent D. Identifying anatomical structures on ultrasound: assistive artificial intelligence in ultrasound?guided regional anesthesia. Clin Anat. 2021;34:802-809. Available in: http://dx.doi.org/10.1002/ca.23742