2022, Number 2
<< Back Next >>
Medisur 2022; 20 (2)
Explainable artificial intelligence, a perspective to the automatic classification of COVID-19 through chest X-rays problem
López-Cabrera JD, Pérez-Díaz M
Language: Spanish
References: 50
Page: 341-351
PDF size: 393.19 Kb.
ABSTRACT
This research aims to elucidate, from the analysis of explainable artificial intelligence techniques, the robustness and level of generalization of the proposed computer vision methods to identify COVID-19 using chest X-ray images. Also, alert researchers and reviewers about the problem of learning by shortcuts. In this study, recommendations are followed to identify if the automatic classification models of COVID-19 are affected by shortcut learning. To do this, articles that use explainable artificial intelligence methods were reviewed. It was shown that when using the full chest X-ray image or the bounding box of the lungs, the regions of the image that contribute the most to the classification appear outside the lung region, something that does not make sense. The results indicate that, so far, the existing models present the problem of learning by shortcuts, which makes them inappropriate to be used in clinical settings.
REFERENCES
Worldometer. COVID Live - Coronavirus Statistics[Internet]. New York: Worldometer; 2021[citado 25/01/2022]. Disponible en: Disponible en: https://www.worldometers.info/coronavirus/ 1.
Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta. 2020;505:172-5.
Ai T, Yang Z, Hou H, Zhan C, Chen C, Lu W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32-40.
Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann Intern Med. 2020;173(4):262-7.
Xie M, Chen Q. Insight into 2019 novel coronavirus-An updated interim review and lessons from SARS-CoV and MERS-CoV. International Journal of Infectious Diseases. 2020;94:119-24.
Dennie C, Hague C, Lim RS, Manos D, Memauri BF, Nguyen ET, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists. Consensus Statement Regarding Chest Imaging in Suspected and Confirmed COVID-19. Can Assoc Radiol J. 2020;71(4):470-481.
Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement From the Fleischner Society. Chest. 2020;158(1):106-16.
Islam MM, Karray F, Alhajj R, Zeng J. A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19). IEEE Access. 2021;9:30551-72.
López-Cabrera JD, Orozco-Morales R, Portal-Diaz JA, Lovelle-Enríquez O, Pérez-Díaz M. Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging. Health Technol. 2021;11(2):411-24.
López-Cabrera JD, Orozco-Morales R, Portal-Diaz JA, Lovelle-Enríquez O, Perez-Diaz M. Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging (Part II). The Shortcut Learning Problem. Health Technol (Berl). 2021;11:1331-45.
López-Cabrera JD, Díaz JAP, Morales RO, Díaz MP. Revisión crítica sobre la identificación de COVID-19 a partir de imágenes de rayos x de tórax usando técnicas de inteligencia artificial. Rev Cub Transf Dig. 2020;1(3):67-99.
Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, Bethge M, et al. Shortcut learning in deep neural networks. Nature Machine Intelligence. 2020;2(11):665-73.
DeGrave AJ, Janizek JD, Lee SI. AI for radiographic COVID-19 detection selects shortcuts over signal. Nature Machine Intelligence. 2021;3:610-9.
Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essentials for Radiologists on COVID-19: An Update-Radiology Scientific Expert Panel. Radiology. 2020;296(2):E113-4.
Cellina M, Orsi M, Toluian T, Valenti Pittino C, Oliva G. False negative chest X-Rays in patients affected by COVID-19 pneumonia and corresponding chest CT findings. Radiography. 2020;26(3):e189-94.
Ng MY, Lee EY, Yang J, Yang F, Li X, Wang H, et al. Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review. Radiology Cardiothoracic Imaging. 2020;2(1):e200034.
Yoon SH, Lee KH, Kim JY, Lee YK, Ko H, Kim KH, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea. Korean J Radiol. 2020;21(4):494-500.
Ippolito D, Pecorelli A, Maino C, Capodaglio C, Mariani I, Giandola T, et al. Diagnostic impact of bedside chest X-ray features of 2019 novel coronavirus in the routine admission at the emergency department: case series from Lombardy region. Eur J Radiol. 2020;129:109092.
Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, et al. Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy. medRxiv[Internet]. 2020[citado 07/6/2021]: doi: https://doi.org/10.1101/2020.04.08.20040907. Disponible en: https://www.medrxiv.org/content/10.1101/2020.04.08.20040907v1.full.pdf19.
Albahri OS, Zaidan AA, Albahri AS, Zaidan BB, Abdulkareem KH, Al-qaysi ZT, et al. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of Infection and Public Health. 2020;13:1381-96.
Cohen JP, Hashir M, Brooks R, Bertrand H. On the limits of cross-domain generalization in automated X-ray prediction. En: Medical Imaging with Deep Learning[Internet]. Zurich: PMLR; 2020[citado 1/02/2021]. p.136-55. Disponible en: Disponible en: http://proceedings.mlr.press/v121/cohen20a.html 21.
Prevedello LM, Halabi SS, Shih G, Wu CC, Kohli MD, Chokshi FH, et al. Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions. Radiology: Artificial Intelligence. 2019;1(1):e180031.
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLOS Medicine. 2018;15(11):e1002683.
Maguolo G, Nanni L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. Information Fusion. 2021;76:1-7.
Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence. 2021;3(3):199-217.
Cohen JP, Morrison P, Dao L, Roth K, Duong T, Ghassemi M. COVID-19 Image Data Collection: Prospective Predictions are the Future[Internet]. Ithaca: Cornell university; 2020[citado 07/02/2021]. Disponible en: Disponible en: https://arxiv.org/abs/2006.11988 26.
Garcia Santa Cruz B, Nicolás Bossa M, Sölter J, Dominik Husch A. Public Covid-19 X-ray datasets and their impact on model bias - a systematic review of a significant problem. Medical Image Analysis. isysmedRxiv. 2021;74:1022225
Garcia Santa Cruz B, Sölter J, Nicolas Bossa M, Dominik Husch A. On the Composition and Limitations of Publicly Available COVID-19 X-Ray. Imaging Datasets[Internet]. Ithaca: Cornel University; 2020 [citado 21/09/2020]. Disponible en: Disponible en: https://arxiv.org/abs/2008.11572 28.
Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 2020;58:82-115.
Ribeiro MT, Singh S, Guestrin C. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. En: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[Internet]. New York : Association for Computing Machinery; 2016[citado 10/11/2020]. p. 1135-44. (KDD '16). Disponible en: Disponible en: https://doi.org/10.1145/2939672.2939778 30.
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. En: 2017 IEEE International Conference on Computer Vision[Internet]. Ithaca: Cornell University; 2017. p. 618-26. Disponible en: https://arxiv.org/pdf/1610.02391.pdf31.
Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks. En: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) [Internet]. Ithaca: Cornell University; 2018. p. 839-47. Disponible en: https://ieeexplore.ieee.org/document/835420132.
Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports. 2020;10(1):19549.
Arias-Londoño JD, Gómez-García JA, Moro-Velázquez L, Godino-Llorente JI. Artificial Intelligence Applied to Chest X-Ray Images for the Automatic Detection of COVID-19. A Thoughtful Evaluation Approach. IEEE Access. 2020;8:226811-27.
Tsiknakis N, Trivizakis E, Vassalou EE, Papadakis GZ, Spandidos DA, Tsatsakis A, et al. Interpretable artificial intelligence framework for COVID-19 screening on chest X rays. Experimental and Therapeutic Medicine. 2020;20(2):727-35.
Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S. COVID-CXNet: Detecting COVID-19 in Frontal Chest X-ray Images using Deep Learning[Internet]. Ithaca: Cornell University; 2020[citado 05/05/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2006.13807 36.
Teixeira LO, Pereira RM, Bertolini D, Oliveira LS, Nanni L, Costa YMG. Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images[Internet]. Ithaca: Cornell University; 2020[citado 05/05/2021]. Disponible en: Disponible en: https://arxiv.org/abs/2009.09780 37.
Karim MR, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O. Deep COVIDExplainer: Explainable COVID-19 Diagnosis Based on Chest X-ray Images[Internet]. Ithaca: Cornell University; 2020[citado 05/05/2021]. Disponible en: Disponible en: https://arxiv.org/abs/2004.04582 38.
Qi X, Brown LG, Foran DJ, Nosher J, Hacihaliloglu I. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Int J CARS[Internet]. Ithaca: Cornell University; 2020[citado 05/05/2021] Disponible en: Disponible en: https://arxiv.org/abs/2011.03585 39.
Chowdhury NK, Rahman MdM, Kabir MA. PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf Sci Syst. 2020;8(1):27.
Chowdhury NK, Kabir MA, Rahman MM, Rezoana N. ECOVNet: An Ensemble of Deep Convolutional Neural Networks Based on EfficientNet to Detect COVID-19 From Chest X-rays[Internet]. Ithaca: Cornell University; 2020[citado 05/05/2021] Disponible en: Disponible en: http://arxiv.org/abs/2009.11850 41.
Chatterjee S, Saad F, Sarasaen C, Ghosh S, Khatun R, Radeva P, et al. Exploration of Interpretability Techniques for Deep COVID-19 Classification using Chest X-ray Images[Internet]. Ithaca: Cornell University; 2020[citado 13/03/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2006.02570 42.
Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, et al. CovidAID: COVID-19 Detection Using Chest X-Ray[Internet]. Ithaca: Cornell University; 2020[citado 28/02/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2004.09803 43.
Siddhartha M, Santra A. COVIDLite: A depth-wise separable deep neural network with white balance and CLAHE for detection of COVID-19[Internet]. Ithaca: Cornell University; 2020[citado 28/02/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2006.13873 44.
Liu B, Yan B, Zhou Y, Yang Y, Zhang Y. Experiments of Federated Learning for COVID-19 Chest X-ray Images[Internet]. Ithaca: Cornell University; 2020[citado 10/03/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2007.05592 45.
Kedia P, Anjum P., Katarya R. CoVNet-19: A Deep Learning model for the detection and analysis of COVID-19 patients. Applied Soft Computing. 2021;104:107184.
Aviles-Rivero AI, Sellars P, Schönlieb C-B, Papadakis N. GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays[Internet]. Ithaca: Cornell University; 2020[citado 28/02/2021]. Disponible en: Disponible en: http://arxiv.org/abs/2010.00378 47.
Karthik R, Menaka R, M. H. Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN. Applied Soft Computing. 2020;(99):106744.
Singh RK, Pandey R, Babu RN. COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. Neural Comput & Applic[Internet]. 2021[citado 25/01/2021];(14):[aprox. 7 p.]. Disponible en: https://www.springerprofessional.de/en/covidscreen-explainable-deep-learning-framework-for-differential/1875306649.
Oh Y, Park S, Chul Ye J. Deep Learning COVID-19 Features on CXR using Limited Training Data Sets. IEEE TRANSACTIONS ON MEDICAL IMAGING. 2020;39(8):2688-2700.