2024, Number 2
<< Back Next >>
Odovtos-Int J Dent Sc 2024; 26 (2)
Crystallographic and Topographic Analysis of Ultra-Translucent Zirconia After Various Surface Treatments
Vargas KT, Santamaría VJ
Language: English
References: 25
Page: 101-112
PDF size: 1167.76 Kb.
ABSTRACT
The aim of the present study was to analyze the effects of 4 different surface treatments, on the crystallographic characteristics of Ultra-Translucent Zirconia. Fully sintered zirconia specimens of highly translucent yttria partially stabilized zirconia (Y-PSZ) (KATANA UTML) were divided into four experimental groups and a control group (n=10). Each group received one of the following surface treatments: sandblasting with 50µm alumina particles (Al
₂O
₃), sandblasting with 110µm alumina particles, and grinding with a rotary high-speed turbine with and without water irrigation. For each sample, x-ray diffraction was carried out to analyze peak intensity, calculate the crystallite size, and detect the presence of compressive and tensile stress. Surface roughness was measured on all specimens using a standard scanning profilometer. Additionally, scanning electron microscopy (SEM) was performed to qualitatively analyze the surfaces of the specimens. Statistical analysis included repeated measures analysis of variance and post hoc Tukey test (p≤0.05). The control group exhibited the highest crystallite size (323nm). All surface treatments led to a reduction in the crystallite size, with the most significant reduction observed in the groups subjected to sandblasting with 110µm alumina particles and high-speed grinding with irrigation. Sandblasting with 50µm alumina particles resulted in less transformation of the crystallite size. A general tendency of the diffraction peaks to shift to a lower angle can be observed in the experimental groups, indicating the presence of compressive stress on the samples. Profilometry revealed higher roughness in the ground samples (6,14µm and 6,57µm) compared to the sandblasted groups (2,93µm and 2,02µm). The crystal domain size showed a tendency to decrease after the surface treatments. Sandblasted samples, as well as ground samples without irrigation, exhibited compressive stress. Sandblasted samples had lower surface roughness compared to the ground samples. Sandblasting with 50µm alumina particles caused the least decrease in crystallite size.
REFERENCES
Garcia Fonseca R., de Oliveira Abi-RachedF., dos Santos Nunes Reis J.M., RambaldiE., Baldissara P. Effect of particle size on theflexural strength and phase transformation ofan airborne-particle abraded yttria-stabilizedtetragonal zirconia polycrystal ceramic. JProsthet Dent. 2013; 110 (6): 510-4.
Karakoca S., Yilmaz H. Influence of surfacetreatments on surface roughness, phase transformation,and biaxial flexural strength ofY-TZP ceramics. J Biomed Mater Res B ApplBiomater. 2009; 91 (2): 930-7.
Aboushelib M.N., Wang H. Effect of surfacetreatment on flexural strength of zirconiabars. J Prosthet Dent . 2010; 104 (2): 98-104.
Passos S.P., Linke B., Major P.W., NychkaJ.A. The effect of air-abrasion and heattreatment on the fracture behavior of Y-TZP.Dent Mater. 2015; 31 (9): 1011-21.
Song J.Y., Park S.W., Lee K., Yun K.D., LimH.P. Fracture strength and microstructure ofY-TZP zirconia after different surface treatments.J Prosthet Dent. 2013; 110 (4): 274-80.
Aurélio I.L., Marchionatti A.M., MontagnerA.F., May L.G., Soares F.Z. Does air particleabrasion affect the flexural strength andphase transformation of Y-TZP? A systematicreview and meta-analysis. Dent Mater. 2016;23 (6): 827-45.
Chintapalli R.K., Marro F.G., Jimenez-PiqueE., Anglada M. Phase transformation andsubsurface damage in 3Y-TZP after sandblasting.Dent Mater. 2013; 29 (5): 566-72.
Chintapalli R.K., Mestra Rodriguez A.,Garcia Marro F., Anglada M. Effect ofsandblasting and residual stress on strengthof zirconia for restorative dentistry applications.J Mech Behav Biomed Mater. 2014;29: 126-37.
Ozcan M., Melo R.M., Souza R.O., MachadoJ.P., Felipe Valandro L., Botttino M.A. Effectof air-particle abrasion protocols on the biaxialflexural strength, surface characteristics andphase transformation of zirconia after cyclicloading. J Mech Behav Biomed Mater. 2013;20: 19-28.
Pereira G.K.R., Fraga S., Montagner A.F.,Soares F.Z.M., Kleverlaan C.J., ValandroL.F. The effect of grinding on the mechanicalbehavior of Y-TZP ceramics: A systematicreview and meta-analyses. J Mech BehavBiomed Mater. 2016; 63: 417-42.
Rues S., Schwindling F.S., Meyer A.,Rammelsberg P., Schmitter M. Fracture resistanceof zirconia-based all-ceramic crownsafter bur adjustment. Eur J Oral Sci. 2017;
125 (4): 310-13.12. Alao A.R., Stoll R., Song X.F., Miyazaki T.,Hotta Y., Shibata Y., Yin L. Surface quality ofyttria-stabilized tetragonal zirconia polycrystalin CAD/CAM milling, sintering, polishingand sandblasting processes. J Mech BehavBiomed Mater. 2017; 65: 102-16.
Toraya H., Yoshimura M., Somiya S. CalibrationCurve for Quantitative Analysis of theMonoclinic-Tetragonal ZrO2 System byX-Ray Diffraction. J Am Ceram Soc. 1984;67: C119-C121.
Zhang Y. Making yttria-stabilized tetragonalzirconia translucent. Dent Mater. 2014; 30(10): 1195-203.
Inokoshi M., Shimizu H., Nozaki K., TakagakiT., Yoshihara K., Nagaoka N., Zhang F.,Vleugels J., Van Meerbeek B., Minakuchi S.Crystallographic and morphological analysisof sandblasted highly translucent dentalzirconia. Dent Mater. 2018; 34 (3): 508-18.
Kolakarnprasert N., Kaizer M.R., Kim D.K.,Zhang Y. New multi-layered zirconias:Composition, microstructure and translucency.Dent Mater. 2019; 35 ( 5): 797-806.
Zhang Y., Lawn B.R. Novel ZirconiaMaterials in Dentistry. J Dent Res. 2018; 97(2): 140-147.
Venkateswarlu K., Sreekanth D., SandhyaraniM., Muthupandl V., Bose A.C., RameshbabuN. X-Ray peak profile analysis ofnanostructured hydroxiapatite and fluorapatite.Int J Biosci Biochem Bioinforma. 2012;2: 417-21.
Vargas-Koudriavtsev T., Fonseca-JiménezP., Barrantes-Delgado P., Ruiz-Delgado B.,Conejo-Barboza G., Herrera-Sancho Ó.A.Effects of Bleaching Gels on Dental EnamelCrystallography. Oral Health Prev Dent.
2021; 19 (1): 7-14.20. Chavarría-Sibaja A., Marín-Sosa S., Bolaños-Jiménez E., Hernández-Calderón M.,Herrera-Sancho O.A. MgO surface latticephonons observation during interstellar icetransition. Sci Rep. 2021; 11 (1): 6149-155.
Camposilvan E., Leone R., Gremillard L.,Sorrentino R., Zarone F., Ferrari M., Chevalier J. Aging resistance, mechanical propertiesand translucency of different yttria-stabilizedzirconia ceramics for monolithic dentalcrown applications. Dent Mater. 2018; 34(6): 879-90.
Lawson N.C., Maharishi A. Strength andtranslucency of zirconia after high-speedsintering. J Esthet Restor Dent. 2020; 32 (2):219-225.
Ahmed W.M., Troczynski T., McCullaghA.P., Wyatt C.C.L., Carvalho R.M. Theinfluence of altering sintering protocols onthe optical and mechanical properties ofzirconia: A review. J Esthet Restor Dent.2019; 31 (5): 423-430.
Hammond, Christopher. The basics of crystallographyand diffraction (4th ed). Oxford :Oxford University Press, 2015.
Alammar A., Blatz M.B. The resin bondto high-translucent zirconia-A systematicreview. J Esthet Restor Dent. 2022; 34 (1):117-35.