2024, Number 2
Potential of Artificial Intelligence to Generate Health Research Reports of Decayed, Missed and Restored Teeth
Language: English
References: 15
Page: 14-19
PDF size: 378.18 Kb.
ABSTRACT
This study aims to indicate the potential of artificial intelligence (AI) in epidemiological reports of decayed, missed and restored teeth. As a proof of concept our study model used panoramic x-ray images and an AI algorithm for tooth numbering, detection of the caries and restorations with accuracy over 80% for such diagnostic tasks. The output came as the number of decayed, missed and restored teeth according to patient´s age and the DMFT index (number of decayed, missing, and filled teeth) which varied from 3.6 (up to 20 years old) to 20.4 (+60 years old). Thus, it is suggested that AI is a promising method to automate health data collection through the analysis of x-rays.REFERENCES
Brasil. Ministério da Saúde. Secretaria deAtenção à Saúde. Secretaria de Vigilânciaem Saúde. SB Brasil 2010: Pesquisa Nacionalde Saúde Bucal: resultados principais /Ministério da Saúde. Secretaria de Atenção àSaúde. Secretaria de Vigilância em Saúde. –Brasília : Ministério da Saúde, 2012. 116 p.(Accessed February 27, 2023). Available in:https://bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal.pdf
Roncalli A.G., Silva N.N., NascimentoA.C., Freitas C.H.S.M., Casotti E., PeresK.G., Moura L., Peres M.A., Freire M.C.M.,Cortes M.I.S., Vettore M.V., Paludetto JúniorM., Figueiredo N., Goes P.S.A., Pinto R.S.,Marques R.A.A., Moysés S.J., Reis S.C.G.B.,Narvai P.C. Relevant methodological issuesfrom the SBBrasil 2010 Project for nationalhealth surveys. Cad Saude Publica. 2012; 28Suppl: s40-57. doi: https://doi.org/10.1590/s0102-311x2012001300006
Azevedo J.S., Azevedo M.S., Oliveira L.J.C.,Correa M.B., Demarco F.F. Needs for dentalprostheses and their use in elderly Braziliansaccording to the National Oral HealthSurvey (SBBrazil 2010): prevalence ratesand associated factors. Cad Saude Publica.2017; 33 (8): e00054016. doi: https://doi.org/10.1590/0102-311X00054016
Abdalla-Aslan R., Yeshua T., Kabla D.,Leichter I., Nadler C. An artificial intelligencesystem using machine-learning for automaticdetection and classification of dental restorationsin panoramic radiography. Oral SurgOral Med Oral Pathol Oral Radiol. 2020; 130(5): 593-602. doi: https://doi.org/10.1016/j.oooo.2020.05.012
Chen S.L., Chen T.Y., Huang Y.C., ChenC.A., Chou H.S., Huang Y.Y., Lin W.C., LiT.C., Yuan J.J., Abu P.A.R., Chiang W.Y.Missing teeth and restoration detection usingdental panoramic radiography based on transferlearning with CNNs. IEEE Access 2022;10: 118654-64. doi: https://doi.org/10.1109/ACCESS.2022.3220335
Costa E.D., Gaêta-Araujo H., Carneiro J.A.,Zancan B.A.G., Baranauskas J.A., MacedoA.A.M., Tirapelli C. Development of a dentaldigital dataset for research in artificial intelligence:the importance of labeling performedby radiologists. Oral Surg Oral Med OralPathol Oral Radiol. 2023 Dec. doi: https://doi.org/10.1016/j.oooo.2023.12.006