2024, Number 2
<< Back Next >>
Ortho-tips 2024; 20 (2)
Femoral bone reconstruction after tumor resection, a case report and literature review
Amador CA, Sánchez AR, Tecuatl GR, Gutiérrez MI, Barriga MMA, Reyes PR, Silva MJA
Language: Spanish
References: 27
Page: 95-102
PDF size: 291. Kb.
ABSTRACT
Chondrosarcoma are malignant tumors constituted by cartilaginous tissues, the second most common type after osteosarcoma among musculoskeletal tumors, as a general rule they are not sensitive to chemotherapy nor radiotherapy, therefore the treatment involves wide surgical resection with limb salvage, resulting in a bone defect that needs to be reconstructed. reconstruction options available range from endoprostheses, adjuvants after curettage or biological reconstruction using autograft or allograft. Here is a clinical case report of a male patient with massive femoral bone loss, following the resection of a central chondrosarcoma; the bone reconstruction was performed using segmental bone allograft and autograft in combination with platelet rich plasma (PRP), bone marrow aspirate (BMA) and Gelfoam, the reconstruction was stabilized with osteosynthesis material, specifically a locked compression plate (LCP). Strict follow-up was conducted until graft consolidation and integration, which occurred 12 months after the latest surgery. This technique is based on adherence to the principles of the recently introduced "diamond concept", which provides guidelines for the best possible intervention thus increasing the success rate of reconstruction and consolidation. With these strategies, a definitive treatment for bone loss is offered, which is technically accessible for orthopaedic surgeons, reproductible and cost-effective for the patient.
REFERENCES
Clara-Altamirano MA, García-Ortega DY, Núñez-González M, Caro-Sánchez CHS, Espejo-Sánchez G, Martínez-Said H, et al. Estado actual del condrosarcoma en un centro de referencia. Acta Ortop Mex. 2021; 35 (4): 300-304.
Esparza-Romero R, Cortés-Torres EJ, García-Martínez D, et al. Condrosarcomas óseos: características clínicas y resultados quirúrgicos en cinco años. Rev Med Inst Mex Seguro Soc. 2018; 56 (3): 273-278.
Álvarez LA, García LY, Casanova MC, Muñoz IA. Condrosarcoma. Rev Cubana Ortop Traumatol. 2007; 21 (2).
Gazendam A, Popovic S, Parasu N, Ghert M. Chondrosarcoma: A Clinical Review. J Clin Med. 2023; 12 (7): 2506.
Donati D, Zavatta M, Gozzi E, Giacomini S, Campanacci L, Mercuri M. 2-2.5 Modular prosthetic replacement of the proximal femur after resection of a bone tumour a long-term follow-up. J Bone Joint Surg Br. 2001; 83 (8): 1156-1160. doi: 10.1302/0301-620x.83b8.12165.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017; 2 (4): 224-247. doi: 10.1016/j.bioactmat.2017.05.007.
Liu Q, He H, Duan Z, Zeng H, Yuan Y, Wang Z, Luo W. Intercalary allograft to reconstruct large-segment diaphysis defects after resection of lower extremity malignant bone tumor. Cancer Manag Res. 2020; 12: 4299-4308. doi: 10.2147/CMAR.S257564.
Krieg AH, Davidson AW, Stalley PD. Intercalary femoral reconstruction with extracorporeal irradiated autogenous bone graft in limb-salvage surgery. J Bone Joint Surg Br. 2007; 89 (3): 366-371. doi: 10.1302/0301-620X.89B3.18508.
Tsuchiya H, Wan SL, Sakayama K, Yamamoto N, Nishida H, Tomita K. Reconstruction using an autograft containing tumour treated by liquid nitrogen. J Bone Joint Surg Br. 2005; 87 (2): 218-225. doi: 10.1302/0301-620x.87b2.15325.
Giannini C, Sambri A, Dalla Rosa M, Zucchini R, Bochiccio V, Fiore M, et al. Intercalary bone graft of the tibia: case series and review of the literature. Eur J Orthop Surg Traumatol. 2020; 30 (8): 1421-1427. doi: 10.1007/s00590-020-02718-y. Epub 2020 Jun 19. Erratum in: Eur J Orthop Surg Traumatol. 2020.
Panagopoulos GN, Mavrogenis AF, Mauffrey C, Lesensky J, Angelini A, Megaloikonomos PD, et al. Intercalary reconstructions after bone tumor resections: a review of treatments. Eur J Orthop Surg Traumatol. 2017; 27 (6): 737-746. doi: 10.1007/s00590-017-1985-x.
Li J, Wang Z, Pei GX, Guo Z. Biological reconstruction using massive bone allograft with intramedullary vascularized fibular flap after intercalary resection of humeral malignancy. J Surg Oncol. 2011; 104 (3): 244-249. doi: 10.1002/jso.21922.
Mittermayer F, Windhager R, Dominkus M, Krepler P, Schwameis E, Sluga M, et al. Revision of the Kotz type of tumour endoprosthesis for the lower limb. J Bone Joint Surg Br. 2002; 84 (3): 401-406. doi: 10.1302/0301-620x.84b3.12204.
Neogi DS, Kumar V, Malhotra R. Femoral allograft in the management of osseous hydatidosis presenting as femoral shaft non-union. Arch Orthop Trauma Surg. 2009; 129 (12): 1627-1632. doi: 10.1007/s00402-008-0797-1.
Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007; 38 Suppl 4: S3-6. doi: 10.1016/s0020-1383(08)70003-2.
Andrzejowski P, Giannoudis PV. The 'diamond concept' for long bone non-union management. J Orthop Traumatol. 2019; 20 (1): 21. doi: 10.1186/s10195-019-0528-0.
Rodriguez-Fontan F. Fracture healing, the diamond concept under the scope: hydroxyapatite and the hexagon. Medicina (B Aires). 2022; 82 (5): 764-769.
Schottel PC, Warner SJ. Role of bone marrow aspirate in orthopedic trauma. Orthop Clin North Am. 2017; 48 (3): 311-321. doi: 10.1016/j.ocl.2017.03.005.
Lee JY, Choi MH. Autologous mesenchymal stem cells loaded in Gelfoam for structural bone allograft healing in rabbits. Cell Tissue Bank. 2011; (12): 299-309.
Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br. 2005; 87 (7): 896-902. doi: 10.1302/0301-620X.87B7.16289. PMID: 15972899.
Murphy MB, Terrazas JA, Buford DA. Bone marrow concentrate and platelet-rich plasma acquisition and preparation: why technique matters, Techniques in Regional Anesthesia and Pain Management. 2015; 19 (1-2): 19-25, ISSN 1084-208X
Schmidt AH. Autologous bone graft: is it still the gold standard? Injury. 2021; 52 (Suppl. 2): S18-S22, ISSN 0020-1383. Available in: https://doi.org/10.1016/j.injury.2021.01.043.
Rodriguez CE. An algorithmic approach towards the orthoplastic management of osseous and soft tissue defects in post-traumatic distal tibial fractures. Review Article. J Orthop Trauma Surg Rel Res. 2017; 12 (2): 56-61.
Kuo ZK, Lai PL, Toh EK, Weng CH, Tseng HW, Chang PZ, et al. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep. 2016; 6: 32884. Available in: https://doi.org/10.1038/srep32884.
Wang CY, Kuo ZK, Hsieh MK, Ke LY, Chen CC, Cheng CM, et al. Cell migration of preosteoblast cells on a clinical gelatin sponge for 3D bone tissue engineering. Biomed Mater. 2019; 15 (1): 015005. doi: 10.1088/1748-605X/ab4fb5.
Giles MÓI, Sánchez AR, Reyes PR, Barriga MMA, Silva MJA, Gutiérrez-Mendoza I, et al. Empleo de esponjas de gelatina "Gelfoam" como andamio en combinación con autoinjerto para el tratamiento de pseudoartrosis. Reporte de Casos. Orthotips. 2022; 18 (4): 331-336.
Jamshidi K, Bahardoust M, Karimi Behnagh A, Bagherifard A, Mirzaei A. How the choice of osteosynthesis affects the complication rate of intercalary allograft reconstruction? A systematic review and meta-analysis. Indian J Orthop. 2021; 56 (4): 547-558. doi: 10.1007/s43465-021-00563-7.