2023, Number 3
<< Back Next >>
Rev Neurol Neurocir Psiquiat 2023; 51 (3)
Copolymer-1 as potential therapy for mild cognitive impairment
Fuentes-Fernández-Cueto M, Ibarra A
Language: Spanish
References: 49
Page: 144-150
PDF size: 168.01 Kb.
ABSTRACT
Mild Cognitive Impairment (MCI) is an early stage of loss of cognitive ability that can precede dementia and Alzheimer's disease (AD). Neuroinflammation plays a major role in the pathogenesis of MCI. One of the treatments approved by the United States' Food and Drug Administration (FDA) for relapsing-remitting multiple sclerosis is Copolymer-1 (Cop-1), also known as glatiramer acetate, a synthetic polypeptide of four amino acids. The therapeutic effect of Cop-1 is due to the fact that it promotes immunomodulation through a change in the phenotype of T lymphocytes from proinflammatory to anti-inflammatory and stimulates the production of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in neurogenesis and generation of hippocampal long-term potentiation. BDNF levels are significantly decreased in aging patients with MCI, so Cop-1 immunization could promote synaptic plasticity and memory by increasing BDNF production in these patients.
REFERENCES
Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol. 2021; 268 (5): 1615-1622. Available in: https: //doi.org/10.1007/s00415-019-09506-7
Cheng YW, Chen TF, Chiu MJ. From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat. 2017; 13: 491-498 Available in: https: //doi.org/10.2147/NDT.S123428
Li JQ, Tan L, Wang HF, Tan MS, Tan L, Xu W et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016; 87 (5): 476-484. Available in: https://doi.org/10.1136/jnnp-2014-310095
Lissek V, Suchan B. Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev. 2021; 122: 143-164. Available in: https://doi.org/10.1016/j.neubiorev.2020.12.022
Dunne RA, Aarsland DO, Brien JT, Ballard C, Banerjee S, Fox NC et al. Mild cognitive impairment: the Manchester consensus. Age Ageing. 2021; 50 (1): 72-80. Available in: https://doi.org/10.1093/ageing/afaa228
Chen YX, Liang N, Li XL, Yang SH, Wang YP, Shi NN. Diagnosis and treatment for mild cognitive impairment: a systematic review of clinical practice guidelines and consensus statements. Front Neurol. 2021; 12: 719849. Available in: https://doi.org/10.3389/fneur.2021.719849
Petersen RC. Clinical practice Mild cognitive impairment. N Engl J Med. 2011; 364 (23): 2227-2234. Available in: https://doi.org/10.1056/NEJMcp0910237
Brynskikh A, Warren T, Zhu J, Kipnis J. Adaptive immunity affects learning behavior in mice. Brain Behav Immun. 2008; 22 (6): 861-869. Available in: https://doi.org/10.1016/j.bbi.2007.12.008
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun. 2014; 54: 81-92. Available in: https://doi.org/10.1016/j.jaut.2014.05.005
Nieto-Vera R, Kahuam-Lopez N, Meneses A, Cruz-Martinez Y, Anaya-Jimenez RM, Liy-Salmeron G et al. Copolymer-1 enhances cognitive performance in young adult rats. PLoS One. 2018; 13 (3): e0192885. Available in: https://doi.org/10.1371/journal.pone.0192885
Mufson EJ, Binder L, Counts SE, DeKosky ST, de Toledo-Morrell L, Ginsberg SD et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol. 2012; 123 (1): 13-30. Available in: https://doi.org/10.1007/s00401-011-0884-1
Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R et al. (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI) Cochrane Database Syst Rev. 2014; 7: CD010386. Available in: https://doi.org/10.1002/14651858.CD010386.pub2
Qian J, Wolters FJ, Beiser A, Haan M, Ikram MA, Karlawish J et al. APOE-related risk of mild cognitive impairment and dementia for prevention trials: an analysis of four cohorts. PLoS Med. 2017; 14 (3): e1002254. Available in: https://doi.org/10.1371/journal.pmed.1002254
Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol. 2001; 49 (2): 202-213. Available in: https://www.ncbi.nlm.nih.gov/pubmed/11220740
Fiorini R, Luzzi S, Vignini A. Perspectives on mild cognitive impairment as a precursor of Alzheimer's disease. Neural Regen Res. 2020; 15 (11): 2039-2040. Available in: https://doi.org/10.4103/1673-5374.282256
Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P et al. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer's disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2011; 25 (4): 623-633. Available in: https://doi.org/10.3233/JAD-2011-110092
Romo-Araiza A, Ibarra A. Prebiotics and probiotics as potential therapy for cognitive impairment. Med Hypotheses. 2020; 134: 109410. Available in: https://doi.org/10.1016/j.mehy.2019.109410
Marcinkowska M, Bucki A, Panek D, Siwek A, Fajkis N, Bednarski M et al. Anti-Alzheimer's multi target-directed ligands with serotonin 5-HT6 antagonist butyrylcholinesterase inhibitory and antioxidant activity. Arch Pharm (Weinheim). 2019; 352 (7): e1900041. Available in: https://doi.org/10.1002/ardp.201900041
Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging. 2008; 29 (1): 31-38. Available in: https://doi.org/10.1016/j.neurobiolaging.2006.09.007
Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr. et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology. 2001; 56 (1): 127-129. Available in: https://doi.org/10.1212/wnl.56.1.127
Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci. 2006; 26 (40): 10222-10231. Available in: https://doi.org/10.1523/JNEUROSCI.2250-06.2006
Vana L, Kanaan NM, Ugwu IC, Wuu J, Mufson EJ, Binder LI. Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Am J Pathol 2011; 179 (5): 2533-2550. Available in: https://doi.org/10.1016/j.ajpath.2011.07.044
Rundek T, Tolea M, Ariko T, Fagerli EA. Camargo C J 2021 vascular cognitive impairment (VCI). Neurotherapeutics. Neurotherapeutics. 2022; 19: 68-88. Available in: https://doi.org/10.1007/s13311-021-01170-y
Wu CC, Mungas D, Petkov CI, Eberling JL, Zrelak PA, Buonocore MH et al. Brain structure and cognition in a community sample of elderly. Latinos Neurology. 2002; 59 (3): 383-391. Available in: https://doi.org/10.1212/wnl.59.3.383
DeCarli C. Mild cognitive impairment: prevalence prognosis etiology and treatment. Lancet Neurol. 2003; 2 (1): 15-21. Available in: https://doi.org/10.1016/s1474-4422(03)00262-x
Sharma MJ, Callahan BL. Cerebrovascular and neurodegenerative pathologies in long-term stable mild cognitive impairment. J Alzheimers Dis. 2021; 79 (3): 1269-1283. Available in: https://doi.org/10.3233/JAD-200829
Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of cerebral small vessel disease and age-related cognitive changes. Front Aging Neurosci. 2019; 11: 145. Available in: https://doi.org/10.3389/fnagi.2019.00145
Garcia-Ptacek S, Farahmand B, Kareholt I, Religa D, Cuadrado ML, Eriksdotter M. Mortality risk after dementia diagnosis by dementia type and underlying factors: a cohort of 15,209 patients based on the swedish dementia registry. J Alzheimers Dis. 2014; 41 (2): 467-477. Available in: https://doi.org/10.3233/JAD-131856
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Ageing Res Rev. 2019; 50: 1-8. Available in: https://doi.org/10.1016/j.arr.2019.01.002
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities genetics and Alzheimer's disease. J Neuroinflammation. 2018; 15 (1): 276. Available in: https://doi.org/10.1186/s12974-018-1313-3
Cherry JD, Olschowka JA, Banion MK. Neuroinflammation and M2 microglia: the good the bad and the inflamed. J Neuroinflammation. 2014; 11: 98. Available in: https://doi.org/10.1186/1742-2094-11-98
Baierle M, Nascimento SN, Moro AM, Brucker N, Freitas F, Gauer B et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev. 2015; 2015: 804198. Available in: https://doi.org/10.1155/2015/804198
Di Filippo M, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampa C et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis. 2013; 52: 229-236. Available in: https://doi.org/10.1016/j.nbd.2012.12.009
Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev. 2013; 12 (5): 543-553. Available in: https://doi.org/10.1016/j.autrev.2012.09.005
Cruz Y, Garcia EE, Galvez JV, Arias-Santiago SV, Carvajal HG, Silva-Garcia R et al. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res. 2018; 13 (10): 1743-1752. Available in: https://doi.org/10.4103/1673-5374.238615
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation plasticity and disease. Dev Neurobiol. 2010; 70 (5): 304-322. Available in: https://doi.org/10.1002/dneu.20765
Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic- like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA. 2006; 103 (31): 11784-11789. Available in: https://doi.org/10.1073/pnas.0604681103
Penner MR, Roth TL, Barnes CA, Sweatt JD. An epigenetic hypothesis of aging-related cognitive dysfunction. Front Aging Neurosci. 2010; 2: 9. Available in: https://doi.org/10.3389/fnagi.2010.00009
Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013; 14 (1): 7-23. Available in: https://doi.org/10.1038/nrn3379
Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017; 75: 114-128. Available in: https://doi.org/10.1016/j.neubiorev.2017.01.044
Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2017; 88 (2): 137-145. Available in: https://doi.org/10.1136/jnnp-2016-313300
Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology. 2018; 90 (6): 278-288. Available in: https://doi.org/10.1212/WNL.0000000000004977
Aharoni R, Schottlender N, Bar-Lev DD, Eilam R, Sela M, Tsoory M et al. Cognitive impairment in an animal model of multiple sclerosis and its amelioration by glatiramer acetate. Sci Rep. 2019; 9 (1): 4140. Available in: https://doi.org/10.1038/s41598-019-40713-4
Chen L, Yao Y, Wei C, Sun Y, Ma X, Zhang R et al. T cell immunity to glatiramer acetate ameliorates cognitive deficits induced by chronic cerebral hypoperfusion by modulating the microenvironment. Sci Rep. 2015; 5: 14308. Available in: https://doi.org/10.1038/srep14308
He F, Zou JT, Zhou QF, Niu DL, Jia WH. Glatiramer acetate reverses cognitive deficits from cranial-irradiated rat by inducing hippocampal neurogenesis. J Neuroimmunol. 2014; 271 (1-2): 1-7. Available in: https://doi.org/10.1016/j.jneuroim.2014.03.015
Schwid SR, Goodman AD, Weinstein A, McDermott MP, Johnson KP. Copaxone study G Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci. 2007; 255 (1-2): 57-63. Available in: https://doi.org/10.1016/j.jns.2007.01.070
Ziemssen T, Calabrese P, Penner IK, Apfel R. QualiCOP: real-world effectiveness tolerability and quality of life in patients with relapsing-remitting multiple sclerosis treated with glatiramer acetate treatment-naive patients and previously treated patients. J Neurol. 2016; 263 (4): 784-791. Available in: https://doi.org/10.1007/s00415-016-8058-7
Ahmad MA, Kareem O, Khushtar M, Akbar M, Haque MR, Iqubal A et al. Neuroinflammation: a potential risk for dementia. Int J Mol Sci. 2022; 23 (2): Available in: https://doi.org/10.3390/ijms23020616
Stern JN, Keskin DB, Zhang H, Lv H, Kato Z, Strominger JL. Amino acid copolymer-specific IL-10-secreting regulatory T cells that ameliorate autoimmune diseases in mice. Proc Natl Acad Sci USA. 2008; 105 (13): 5172-5176. Available in: https://doi.org/10.1073/pnas.0712131105