2022, Number 3
<< Back
VacciMonitor 2022; 31 (3)
Treatment of allergic rhinitis in pandemic times. Consensus statement from medical societies of Latin America and the Caribbean
García-Batista N, Torres-Bermúdez J, Batista JR, Maldonado-Ríos VA, Villazón-Salem S, Castro-Almarales RL, Álvarez-Castelló M
Language: Spanish
References: 45
Page: 144-150
PDF size: 283.87 Kb.
ABSTRACT
Allergic rhinitis has been increasing in Latin American countries, leading to a growing population of patients who need medical treatment for this respiratory condition. Its similarity to COVID-19 in terms of symptoms and the possibility of concurrence with it, make allergic rhinitis of particular interest to health systems. The countries of Latin America and the Caribbean have been particularly vulnerable due to multiple challenges, including high poverty rates, limited access to medical care and limitations in the provision of basic health services, as well as the absence of guidelines of treatment for allergic rhinitis in a pandemic situation. With the aim of to provide essential management for multidisciplinary teams in Latin America and the Caribbean regarding the evaluation and treatment of allergic rhinitis during the COVID-19 pandemic, published scientific literature on the treatment of allergic rhinitis and COVID-19 was reviewed, and the opinion of leading professionals from scientific societies in the region was considered. The different measures to avoid infections and the different treatment strategies were analyzed, with an emphasis on intranasal therapy and treatment with allergy vaccines. A position statement was formulated with the intention of maintaining continuity of medical service in the context of a pandemic and minimizing the spread, infection and complication associated with severe acute respiratory syndrome coronavirus 2 in patients undergoing or starting treatment for allergic rhinitis.
REFERENCES
Gao YD, Agache I, Akdis M, Nadeau K, Klimek L, Jutel M, Akdis CA. The effect of allergy and asthma as a comorbidity on the susceptibility and outcomes of COVID-19. Int Immunol. 2022; 34(4):177-88. doi: https://10.1093/intimm/dxab107.
Min W, Zuo J, Han J, Chen J. The impact of comorbid allergic airway disease on the severity and mortality of COVID-19: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2021; 279:1675-90. doi: https://10.1007/s00405-021-07072-1.
Hagemann J, Onorato G. L, Jutel M, Akdis CA, Agache I, Zuberbier T, et al. Differentiation of COVID-19 signs and symptoms from allergic rhinitis and common cold: An ARIA-EAACI-GA (2) LEN consensus. Allergy. 2021; 76(8): 2354-66. doi: https://10.1111/all.14815.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271-80.e8. doi: https://10.1016/j.cell.2020.02.052.
Eldanasory OA, Eljaaly K, Memish ZA, Al-Tawfiq JA. Histamine release theory and roles of antihistamine in the treatment of cytokines storm of COVID-19. Travel Med Infect Dis. 2020; 37: 101874. doi: https://10.1016/j.tmaid.2020.101874.
Ennis M, Tiligada K. Histamine receptors and COVID-19. Inflamm Res. 2021; 70(1), 67-75. doi: https://10.1007/s00011-020-01422-1.
Malone R W, Tisdall P, Fremont-Smith P, Liu Y, Huang XP, White KM, et al. COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Front Pharmacol. 2021; 12: 633680. doi: https://10.3389/fphar.2021.633680.
Afrin LB, Weinstock LB, Molderings G J. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis. 2020; 100: 327-32. doi: https://10.1016/j.ijid.2020.09.016.
Bentley AM, Jacobson MR, Cumberworth V, Barkans JR, Moqbel R, Schwartz L, et al. Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol. 1992; 89(4): 877-83. doi: https://10.1016/0091-6749(92)90444-7.
Morán-Blanco JI, Alvarenga-Bonilla JA, Homma S, Suzuki K, Fremont-Smith P, Villar-Gómez de Las Heras K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care - A retrospective observational study in elderly patients. Pulm Pharmacol Ther. 2021; 67: 101989. doi: https://10.1016/j.pupt.2021.101989.
Izquierdo-Domínguez A, Rojas-Lechuga MJ, Alobid I. Management of Allergic Diseases during COVID-19 Outbreak. Curr Allergy Asthma Rep. 2021; 21(2): 8. doi: https://10.1007/s11882-021-00989-x.
Meltzer EO, Rosario NA, Van Bever H, Lucio L. Fexofenadine: review of safety, efficacy and unmet needs in children with allergic rhinitis. Allergy Asthma Clin Immunol. 2021; 17(1): 113. doi: https://10.1186/s13223-021-00614-6.
Cianferoni A, Votto M. COVID-19 and allergy: How to take care of allergic patients during a pandemic? Pediatr Allergy Immunol. 2020;31 Suppl 26: 96-101. doi: https:// 10.1111/pai.13367.
Ferrer G, Betancourt A, Go CC, Vazquez H, Westover JB, Cagno V, et al. A Nasal Spray Solution of Grapefruit Seed Extract plus Xylitol Displays Virucidal Activity against SARS-CoV-2 in Vitro. bioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.11.23.394114v1. doi: https://10.1101/2020.11.23.394114.
Strauss R, Jawhari N, Attaway AH, Hu B, Jehi L, Milinovich A, et al. Intranasal Corticosteroids are Associated with Better Outcomes in Coronavirus Disease 2019 (COVID-19). J Allergy Clin Immunol Pract. 2021; 9 (11); 3934-40. doi: https://10.1016/j.jaip.2021.08.007.
Scadding GK, Smith PK, Blaiss M, Roberts G, Hellings P W, Gevaert P, et al. Allergic Rhinitis in Childhood and the New EUFOREA Algorithm. Front Allergy. 2021; 2: 706589. Disponible en: doi: https://10.3389/falgy.2021.706589.
Klussmann JP, Lehmann C, Grosheva M, Nagy E, Szijártó V, Nagy G, et al. COVID-19: Azelastine nasal spray Reduces Virus-load In Nasal swabs (CARVIN). Early intervention with azelastine nasal sprays reduces viral load in SARS-CoV-2 infected patients. First report on a double-blind placebo-controlled phase II clinical trial. 2021. https://www.researchgate.net/publication/354645926_COVID-19_Azelastine_nasal_spray_Reduces_Virus-load_In_Nasal_swabs_CARVIN_Early_intervention_with_azelastine_nasal_sprays_reduces_viral_load_in_SARS-CoV-2_infected_patients_First_report_on_a_double-bli. doi: https://10.21203/rs.3.rs-864566/v1.
Sánchez-González M, Rizvi SA, Torres J, Ferrer GA. Randomized Controlled Pilot Trial to Test the Efficacy of Intranasal Chlorpheniramine Maleate With Xylitol for the Treatment of Allergic Rhinitis. Cureus. 2021; 13(3): e14206. Disponible en: doi: https://10.7759/cureus.14206.
Torres J, Go CC, Chohan F, Camacho G, Sánchez-González M, Ferrer G. Chlorpheniramine Maleate Nasal Spray in COVID-19 Patients: Case Series. J Clin Exp Pharmacol. 2021;10: 275. Disponible en: https://10.35248/2161-1459.21.10.275.
Westover J B, Ferrer G, Vazquez H, Bethencourt-Mirabal A, Go CC. In Vitro Virucidal Effect of Intranasally Delivered Chlorpheniramine Maleate Compound Against Severe Acute Respiratory Syndrome Coronavirus 2. Cureus, 2020; 12(9): e10501. Disponible en: https://10.7759/cureus.10501.
Carr W, Bernstein J, Lieberman P, Meltzer E, Bachert C, Price D, et al. A novel intranasal therapy of azelastine with fluticasone for the treatment of allergic rhinitis. J Allergy Clin Immunol. 2021; 129(5): 1282-9.e10. Disponible en: https://10.1016/j.jaci.2012.01.077.
Sestili P, Stocchi V. Repositioning Chromones for Early Anti-inflammatory Treatment of COVID-19. Front Pharmacol. 2020; 11: 854. Disponible en: https://10.3389/fphar.2020.00854.
Kazama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome? Drug Discov Ther. 2020; 14(5): 259-61. Disponible en: https://10.5582/ddt.2020.03095.
Erk I, Kobayashi H. Coronavirus Disease 2019 and Nasal Conditions: A Review of Current Evidence. In Vivo. 2021; 35(3): 1409-17. Disponible en: doi: https://10.21873/invivo.12393.
Bao Y, Chen J, Cheng L, Guo Y, Hong S, Kong W, et al. Chinese Guideline on allergen immunotherapy for allergic rhinitis. J Thorac Dis, 2017; 9 (11): 4607-50. Disponible en: doi: https://10.21037/jtd.2017.10.112.
Asociación Colombiana de Otorrinolaringología, Cirugía de Cabeza y Cuello, Maxilofacial y Estética Facial (ACOR) [monograph on the internet]. Guía para el diagnóstico y tratamiento de la rinitis. Bogotá: ACOR; 2021. (Consultado en línea: 12 de febrero de 2022). Disponible en: https://www.acorl.org.co/resources/imagenes/visitante/medico/apoyo-al-ejercicio-profesional/guias-acorl/GUIAS_ACORL_Rinitis_alergica.pdf.
Larenas-Linnemann DES. Worldwide allergen immunotherapy guidelines: Evidence and experience-based. Allergol Immunopathol. 2017;45(S1):17-22. doi: https://10.1016/j.aller.2017.09.005.
Klimek L, Jutel M. Akdis C, Bousquet J, Akdis M, Bachert C, Agache I, Ansotegui I, Handling of allergen immunotherapy in the COVID-19 pandemic: An ARIA-EAACI statement. Allergy. 2020; 75(7): 1546-54. Disponible en: doi: https://10.1111/all.14336.
Larenas-Linnemann D, Luna-Pech JA, Rodríguez-Pérez N, Rodríguez-González M, Arias-Cruz A, Blandón-Vijil MV, et al. GUIMIT 2019, Guía Mexicana de Inmunoterapia. Guía de diagnóstico de alergia mediada por IgE e inmunoterapia aplicando el método ADAPTE. Rev Alerg Mex, 2019; 66 Suppl 1: 1-105. Disponible en: doi: https://10.29262/ram.v66i5.631.
Larenas-Linnemann DE, Gupta P, Mithani S, Ponda P. Survey on immunotherapy practice patterns: dose, dose adjustments, and duration. Ann Allergy Asthma Immunol. 2012; 108(5): 373-8.e373. Disponible en: doi: https://10.1016/j.anai.2012.03.009.
www.who.int [homepage on the internet] Coronavirus disease (COVID-19) outbreak. Ginebra: OMS; c2020-05. (Consultado en línea: 2 mayo de 2020). Disponible en: http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid -192020.
Tanno LK, Demoly P, Martin B, Berstein J, Morais-Almeida M, Levin M, et al. Allergy and coronavirus disease (COVID-19) international survey: Real-life data from the allergy community during the pandemic. World Allergy Organ J. 2021; 14(2):100515. doi: https:// 10.1016/j.waojou.2021.100515.
Stathis C, Victoria N, Loomis K, Nguyen SA, Eggers M, Septimus E, Safdar N. Review of the use of nasal and oral antiseptics during a global pandemic. Future Microbiol, 2021; 16(2): 119-130. doi: https://10.2217/fmb-2020-0286.
Ramalingam S, Cai B, Wong J, Twomey M, Chen R, Fu RM, et al. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep. 2018; 8: 13630. doi: https://10.1038/s41598-018-31936-y.
Farrell NF, Klatt-Cromwell C, Schneider JS. Benefits and Safety of Nasal Saline Irrigations in a Pandemic-Washing COVID-19 Away. JAMA Otolaryngol Head Neck Surg. 2020; 146(9): 787-8. doi: https://10.1001/jamaoto.2020.1622
Ferrer G, Sánchez-González, MA. Effective Nasal Disinfection as an Overlooked Strategy in Our Fight against COVID-19. Ear Nose Throat J. 2021; 1455613211002929. doi: https://10.1177/01455613211002929.
Yilmaz YZ, Yilmaz BB, Ozdemir YE, Kocazeybek BS, Karaali R, Çakan D, Ozdogan HA, Batioglu-Karaaltin A. Effects of hypertonic alkaline nasal irrigation on COVID-19. Laryngoscope Investig Otolaryngol. 2021; 6(6): 1240-7. doi: https://10.1002/lio2.686.
Go CC, Pandav K, Sánchez-González MA, Ferrer G. Potential Role of Xylitol Plus Grapefruit Seed Extract Nasal Spray Solution in COVID-19: Case Series. Cureus. 2020; 12(11): e11315. doi: https://10.7759/cureus.11315.
Olmos S, Baba J. Improved Nasal Volume Utilizing Hyperosmotic Saline Xylitol Mixture (Effective Alternative or Adjunct to Decongestants and Antihistamines). EC Pulmonology and Respiratory Medicine. 2019; 8(5): 444-52. Disponible en: https://tmjtherapycentre.com/wp-content/uploads/2019/05/Improved-Nasal-volume-utilizing-hyperosmotic-saline.pdf.
Weissman JD, Fernández F, Hwang PH. Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study. Laryngoscope. 2011; 121(11): 2468-72. doi: https://10.1002/lary.22176.
Dilley MA, Phipatanakul W. Environmental control measures for the management of atopy. Ann Allergy Asthma Immunol. 2017; 118(2): 154-60. doi: https://10.1016/j.anai.2015.12.029.
Pashley CH, Fairs A, Free RC, Wardlaw AJ. DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology. Fungal Biol. 2012; 116(2): 214-24. doi: https://10.1016/j.funbio.2011.11.004.
Canova C, Heinrich J, Anto JM, Leynaert B, Smith M, Kuenzli N, et al. The influence of sensitisation to pollens and moulds on seasonal variations in asthma attacks. Eur Respir J. 2013; 42(4): 935-45. doi: https://10.1183/09031936.00097412.
González-Díaz SN, Martin B, Villarreal-González RV, Lira-Quezada CE., Macouzet-Sánchez C, Macías-Weinsmann A, et al. Psychological impact of the COVID-19 pandemic on patients with allergic diseases. World Allergy Organ J. 2021; 14(3): 100510. doi: https://10.1016/j.waojou.2021.100510.
Larenas-Linnemann D, Rodríguez-Pérez N, Arias-Cruz A, Blandón-Vijil MV, Del Río-Navarro BE, Estrada-Cardona A, et al. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions. World Allergy Organ J. 2020;13(11): 100476. doi: https://10.1016/j.waojou.2020.100476.