2021, Number 5
<< Back Next >>
Rev Méd Electrón 2021; 43 (5)
Glucide metabolism disorders and metabolic syndrome in COVID-19 patients
Rufín GLÁ, Rufín BAM, Martínez MA, Vega SMN
Language: Spanish
References: 47
Page: 1-13
PDF size: 1782.73 Kb.
ABSTRACT
Metabolic syndrome includes a set of cardiovascular risk factors associated with resistance to insulin, favoring the appearance of cardiovascular disease and diabetes mellitus type 2. Its etiology is attributed to the combination of genetic and environmental factors, associated to lifestyle, and favoring a proinflammatory and prothrombotic status that worsens the clinical characteristics of the patients with COVID-19. The objective of the review was to analyze the current state of the scientific knowledge in research on the interrelationship between glucide metabolism disorders and metabolic syndrome, associated with the exacerbated proinflammatory condition in COVID-19 patients. Searches were conducted in PubMed, SciELO, CinicalKey, and LILACS databases. A relevant role in the metabolic syndrome pathogenesis is attributed to the inflammatory process generated by poor eating habits, high caloric overfeeding, and to sedentary lifestyle, and also to possible complications with associated comorbidities in COVID-19 patients. It is possible to reduce the metabolic syndrome inflammatory condition through life style and alimentary habits changes that prevent obesity and its effects on insulin resistance and propitiate the reduction of the disease severity associated with the inherent inflammatory processes.
REFERENCES
PalR, BhansaliA. COVID-19, diabetes mellitus and ACE2: theconundrum. Diabetes Res ClinPract. 2020;162:108132. Citado en PubMed; PMID: 32234504.
WuZ, McGooganJM. Characteristics of and important lessons from the coronavirus disease (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. J Am Med Assoc. 2020;323:1239-42. Citado en PubMed; PMID: 32091533.
VerityR, OkellLC, DorigattiI, et al. Estimates of the severity of coronavirus disease (COVID-19): a model-based analysis. Lancet Infect Dis. 2020;20(6):669-77. Citado en PubMed; PMID: 32240634.
GrasselliG, PesentiA, CecconiM. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020;323(16):1545-6. Citado en PubMed; PMID: 32167538.
LiuY, YanLM, WanL, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20(6):656-7. Citado en PubMed; PMID:32199493.
LiuK, FangYY, DengY, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(9):1025-31. Citado en PubMed; PMID:32044814.
OnderG, RezzaG, BrusaferroS. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 May12;323(18):1775-6. Citado en PubMed; PMID:32203977.
LeisegangK, HenkelR, AgarwalA. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J ReprodImmunol. 2019;82(5):e13178. Citado en PubMed; PMID:31373727.
SherlingDH, PerumareddiP, HennekensCH. Metabolic Syndrome. J CardiovascPharmacolTher.2017;22:365-7. Citado en PubMed; PMID:28587579.
SaklayenMG. The global epidemic of the metabolic syndrome.CurrHypertens Rep.2018;20(2):12. Citado en PubMed; PMID:29480368.
GrundySM. Metabolic syndrome update. Trends in Cardiovascular Medicine.2016;26(4):364-73. Citado en PubMed; PMID:26654259.
AnJ, YoonSR, LeeJH, et al. Importance of Adherence to Personalized Diet Intervention in Obesity Related Metabolic Improvement in Overweight and Obese Korean Adults. ClinNutr Res. 2019;8(3):171-83. Citado en PubMed; PMID:31384596.
MazidiM, PennathurS, AfshinniaF. Link of dietary patterns with metabolic syndrome: analysis of the National Health and Nutrition Examination Survey. Nutr Diabetes. 2017;7(3):e255. Citado en PubMed; PMID:28319105.
LiY, ZhaoL, YuD, et al. Metabolic syndrome prevalence and its risk factors among adults in China: A nationally representative cross-sectional study. PLoSOne. 2018;13(6):e0199293. Citado en PubMed; PMID:29920555.
BahariT, UemuraH, Katsuura-KamanoS, et al. Nutrient-derived dietary patterns and their association with metabolic syndrome in a Japanese population.J Epidemiol. 2018;28(4):194-201. Citado en PubMed; PMID:29151477.
LeeYJ, SongS, SongY. High-carbohydrate diets and food patterns and their associations with metabolic disease in the Korean population. Yonsei Med J. 2018;59(7):834-42. Citado en PubMed; PMID:6082982.
VosMB. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation. 2017;135(19):e1017-34. Citado en PubMed; PMID: 5408160.
SuligaE, CieślaE, RębakD, et al. Relationship Between Sitting Time, Physical Activity, and Metabolic Syndrome Among Adults Depending on Body Mass Index (BMI). MedSciMonit. 2018 Oct 26;24:7633-45. Citado en PubMed; PMID: 30361469.
Cardellá RosalesL, HernándezR. Carbohidratos en la dieta humana. En: Cardellá RosalesLL, Hernández FernándezRA, Pita RodríguezGM. Metabolismo - Nutrición. La Habana: Editorial Ciencias Médicas; 2018. p. 187-8.
Díaz-MartínezX, PetermannF, LeivaAM, et al. Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the Chilean population.Rev Med Chil. 2018 May;146(5):585-95. Citado en PubMed; PMID: 30148922.
YangTJ, ChiuCH, TsengMH, et al. The Influence of Pre-Exercise Glucose versus Fructose Ingestion on Subsequent Postprandial Lipemia.Nutrients.2018 Jan 29;10(2).Citado en PubMed; PMID: 29382142.
LitmanEA, GortmakerSL, EbbelingCB, et al. Source of bias in sugar-sweetened beverage research: A systematic review. Public Health Nutr. 2018;21(12):2345-50. Citado en PubMed; PMID: PMID: 29576024.
BraunsteinCR, NoronhaJC, GlennAJ, et al. A double-blind, randomized controlled, acute feeding equivalence trial of small, catalytic doses of fructose and allulose on postprandial blood glucose metabolism in healthy participants: The Fructose and Allulose Catalytic Effects (FACE) Trial. Nutrients.2018;10(6):750. Citado en PubMed; PMID: 29890724.
Geidl-FlueckB, GerberPA. Insights into the Hexose Liver Metabolism-Glucose versus Fructose.Nutrients. 2018;9(9):1026. Citado en PubMed; PMID: 28926951.
PepinA, StanhopeKL, ImbeaultP. Are Fruit Juices Healthier Than Sugar-Sweetened Beverages? A Review.Nutrients. 2019;11(5). Citado en PubMed; PMID: 31052523.
ConnorsP. Dietary Guidelines for Americans 2015-2020. J NutrEduc and Behav [Internet].2016 Jul [citado 24/04/2020];48(7). Disponible en: Disponible en: https://doi.org/10.1016/j.jneb.2016.04.389
RosingerA, HerrickK, GahcheJ, et al. Sugar-sweetened beverage consumption among U.S. youth, 2011-2014.NCHS Data Brief. 2017(271):1-8. Citado en PubMed; PMID: 28135184.
GómezAM. Consumo elevado de fructosa y su posible influencia sobre el metabolismo lipídico. Rev Cubana AlimentNutr [Internet]. 2012[citado 24/04/2020];22(2):287-300. Disponible en: Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=50835
LeeHJ, ChaJY. Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism.BMB Rep. 2018 Sep;51(9):429-36. Citado en PubMed; PMID: 30158026.
Hannou S, HaslamD, McKeown N, et al.Fructose metabolism and metabolic disease.J Clin Invest. 2018 Feb 1;128(2):545-5. Citado en PubMed; PMID: 29388924.
SiqueiraJH. Sugar-Sweetened Soft Drinks and Fructose Consumption Are Associated with Hyperuricemia: Cross-Sectional Analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients.2018 Jul 27;10(8).Citado in PubMed; PMID: 30060512.
MoulinS, SeematterG, SeysselK. Fructose use in clinical nutrition: Metabolic effects and potential consequences. CurrOpinClinNutrMetab Care.2017;20:272-8.Citado in PubMed; PMID: 28383298.
HerderC, GalaT, Carstensen-KirbergM, et al. Circulating Levels of Interleukin 1-Receptor Antagonist and Risk of Cardiovascular Disease: Meta-Analysis of Six Population-Based Cohorts. ArteriosclerThrombVasc Biol. 2017;37(6):1222-7. Citado in PubMed; PMID:28428221.
NierA, BrandtA, RajcicD, et al. Short-Term Isocaloric Intake of a Fructose-but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol NutrFood Res. 2019 Mar;63(6):e1800868. Citado en PubMed; PMID: 30570214.
Della CorteKW, PerrarI, PenczynskiKJ, et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients. 2018 May 12;10(5). Citado en PubMed; PMID: 29757229.
TappyL, MorioB, Azzout-MarnicheD, et al. French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients. 2018 jul 29;10(8):989. Citado en PubMed; PMID: 30060614.
PahkK, KimEJ, LeeYJ, et al. Characterization of glucose uptake metabolism in visceral fat by 18 F-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS One. 2020 Feb 6;15(2):e0228602. Citado en PubMed; PMID: 32027706.
TappyL. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp Biol. 2018 Mar 7;221. Citado en PubMed; PMID: 29514881.
LeeHA, ChoiEJ, ParkB, et al. The association between metabolic components and markers of inflammatory and endothelial dysfunction in adolescents, based on the Ewha Birth and Growth Cohort Study.PLoSOne. 2020 May 20;15(5):e0233469. Citado en PubMed; PMID: 32433661.
NierA, BrandtA, BaumannA, et al. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients. 2019 Mar 18;1(3). Citado en PubMed; PMID: 30889844.
Martínez-FerránM, de la Guía-GalipiensoF, Sanchis-GomarF, et al. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients. 2020 Jun;12(6):1549. Citado en PubMed; PMID: 32466598.
LiuB, LiM, ZhouZ, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020;102452. Citado en PubMed; PMID: 32291137.
ValenzuelaPL, MoralesJS, Pareja-GaleanoH, et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev. 2018;47:80-8. Citado en PubMed; PMID: 30031068.
SantosFAAD, BackIC, GiehlMWC, et al. Level of leisure-time physical activity and its association with the prevalence of metabolic syndrome in adults: a population-based study. Rev Bras Epidemiol. 2020;23:e200070. Citado en PubMed; PMID: 32638850.
GutholdR, StevensGA, RileyLM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018;6(10):e1077-86. Citado en PubMed; PMID: 30193830.
FuL, WangB, YuanT, et al. Clinical characteristics of coronavirus disease; (COVID-19) in China: a systematic review and meta-analysis. J Infect. 2020;80(6): 656-65.Citado en PubMed; PMID: 32283155.
StefanN, BirkenfeldAL, SchulzeMB, et al. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol.2020 Jul;16(7):341-2. Citado en PubMed; PMID: 32327737.