2022, Number 1
Prediction model for metabolic syndrome in adults from Trujillo, Peru
Language: Spanish
References: 28
Page: 1-6
PDF size: 452.60 Kb.
ABSTRACT
Introduction: The metabolic syndrome is a confluence of metabolic alteration that involves blood glucose and lipid profile, blood pressure, and especially obesity that increase cardiovascular risk.Objective: To estimate a prediction model for metabolic syndrome (MS) in adults from the District of Trujillo (Peru) on the basis of atherogenic, anthropometric and lifestyle indicators.
Material and Methods: A total of 260 adults between 30 and 65 years old from the City of Trujillo participated in the study. MS was identified using the ALAD and harmonized ATP III criteria, and a questionnaire containing questions on lifestyles was applied. Logistic regression was used for statistical analysis.
Results: The results of the study show that 70.8% and 38.5% consume soda and snack; 56.2 % and 58.1 % do not consume fruits and vegetables; and 47.7 % of them do not do physical activity. According to ALAD and ATP III, 46.2 % and 48.1 % presented MS, respectively. The BMI (OR: 11.014; 95 % CI: 4.337-27.971); Castelli Index (OR: 2.344; 95 % CI: 1.074-5.113) and TG / HDL (OR: 3.584; 95 % CI: 1.774-7.242) were associated with MS according to ALAD criteria. Sex (OR: 2.385; 95 % CI: 1.2-4.739); Age (OR: 1,939; 95 % CI: 1,032 - 3,644); BMI (OR: 5.880; 95 % CI: 2.547-13.576); Castelli index (OR: 2,935; 95 % CI: 1,295-6,653) and TG/HDL (OR: 6,937; 95 % CI 3,232-14,889) were associated with MS according to ATP III criteria. There was no association between lifestyle and MS.
Conclusions: It is concluded that the prediction model for MS according to ALAD criteria involves BMI, Castelli index and TG/HDL index; gender and age are added in the model for MS according to harmonized ATP III criteria.
REFERENCES
Raimi TH, Dele Ojo BF, Dada SA, Fadare JO, Ajayi DD, Ajayi EA, et al. Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metab Syndr Relat Disord [Internet].2021 [Citado 10/10/2020];19(2):76-82. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/33170086/
Tenk J, Peter M, Hegyi M, Rostás I, Garami A, Szabó I. Perceived stress correlates with visceral obesity and lipid parameters of the metabolic syndrome: A systematic review and meta-analysis. Psychoneuroendocrinology [Internet].2018 [Citado 10/10/2020];95(2018):63-73. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/29803182/
Cuschieri S, Vassallo J, Calleja N, Pace N, Mamo J. The effect of age, gender, TG/HDL-C ratio and behavioral lifestyles on the metabolic syndrome in the high risk Mediterranean Island population of Malta. Diabetes Metab Syndr Clin Res Rev [Internet].2017 [Citado 13/10/2020];11(Supp 1):S321-7. Disponible en: https://doi.org/10.1016/j.dsx.2017.03.009
Arsentales V, Tenorio M, Bernabé A. Asociación entre actividad física ocupacional y síndrome metabólico: Un estudio poblacional en Perú. Rev Chil Nutr [Internet]. 2019 [Citado 25/10/2020];46(4):392-9. Disponible en: Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-75182019000400392
Bolívar E, Villanueva A. Validación y confiabilidad del Cuestionario AQ-27 de actitudes estigmatizadoras hacia pacientes con esquizofrenia en un Hospital General -2015. Rev Neuropsiquiatr [Internet].2017 [Citado 25/10/2020];80(3):165-71. Disponible en: Disponible en: http://www.scielo.org.pe/pdf/rnp/v80n3/a03v80n3.pdf
Huamán J, Álvarez M, Gamboa L, Marino F. Índice cintura-estatura como prueba diagnóstica del Síndrome Metabólico en adultos de Trujillo. Rev Med Hered [Internet]. 2017 [Citado 11/11/2020];28(1):13-20. Disponible en: Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2017000100003
Ren X, Chen ZA, Zheng S, Han T, Li Y, Liu W, et al. Association between triglyceride to HDL-C Ratio (TG/HDL-C) and insulin resistance in chinese patients with newly diagnosed type 2 diabetes mellitus. PLoS One [Internet]. 2016 [Citado 12/03/2021];11(4):1-13. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/27115999/
Bernabé Ortiz A, Carrillo Larco RM, Gilman RH, Checkley W, Smeeth L, Miranda JJ, et al. Contribution of modifiable risk factors for hypertension and type-2 diabetes in Peruvian resource-limited settings. J Epidemiol Community Health [Internet]. 2015 [Citado 12/03/2021];70(1):49-55. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26248550/
Dos Prazeres E, Sabino C, Dornelas A, Galvão I, Da Silva A, Kruze I. Razón entre grasa visceral y subcutánea como predictor de alteraciones cardiometabólicas. Rev Chil Nutr [Internet]. 2018 [Citado 23/03/2021];45(1):28-36. Disponible en: Disponible en: https://scielo.conicyt.cl/pdf/rchnut/v45n1/0716-1549-rchnut-45-01-0028.pdf
Von Bibra H, Saha S, Hapfelmeier A, Müller G, Schwarz P. Impact of the Triglyceride/High-Density Lipoprotein Cholesterol Ratio and the Hypertriglyceremic-Waist Phenotype to Predict the Metabolic Syndrome and Insulin Resistance. Horm Metab Res [Internet]. 2017 [Citado 23/03/2021];49(07):542-9. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/28597452/
Salcedo Cifuentes M, Belalcazar S, Acosta EY, Medina Murillo JJ. Conventional biomarkers for cardiovascular risks and their correlation with the castelli risk index-indices and TG/HDL-c. Arch Med [Internet]. 2019 [Citado 23/03/2021];20(1):11-22. Disponible en: Disponible en: https://revistasum.umanizales.edu.co/ojs/index.php/archivosmedicina/article/view/3534/5414