2021, Number 4
<< Back Next >>
Rev Cubana Farm 2021; 54 (4)
Antibacterial activity of essential oils of plants growing in Colombia and its effect on the activity of β-lactam antibiotics
Barrios MSX, Stashenko EE, Ocazionez JRE, Fuentes LJL
Language: Spanish
References: 24
Page: 1-15
PDF size: 706.87 Kb.
ABSTRACT
Introduction: Methicillin-resistant Staphylococcus aureus is a serious public health
problem and the most common cause of hospital infection worldwide.
Objective: Assess the antibacterial activity against methicillin-resistant
Staphylococcus aureus of essential oils from plants growing in Colombia and its
potentiating effects on the activity of β-lactam antibiotics.
Methods: The antibacterial activity of twenty-seven essential oils obtained by
microwave-assisted hydrodistilation was assessed, for which the micro-dilution
method was used, both in Staphylococcus aureus strains resistant to methicillin
and in Staphylococcus aureus sensitive to methicillin. To this end, their minimum
inhibitory concentration values were determined. The enhancing effect of
essential oils on the activity of β-lactam antibiotics was evaluated using cotreatment
procedures in the methicillin-resistant strain of Staphylococcus aureus.
Results: Based on the values of minimum inhibitory concentration in methicillinresistant
Staphylococcus aureus, the essential oils of Psidium sartorianum and
Turnera diffusa showed antibacterial effect, and at non-inhibitory concentrations, significantly reduced the values of minimum inhibitory concentration of antibiotics
in the Staphylococcus aureus strain resistant to methicillin.
Conclusions: The results indicate that the essential oils of P. sartorianum and T.
diffusa have antibacterial properties and may enhance the activity of β-lactam
antibiotics in methicillin-resistant Staphylococcus aureus. The species P.
sartorianum and T. diffusa are sources of agents that modify bacterial resistance
to antibiotics.
REFERENCES
Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, et al.Survey of infections due to Staphylococcus species: Frequency of occurrence andantimicrobial susceptibility of isolates collected in the United States, Canada,Latin America, Europe, and the Western Pacific Region for the SENTRYantimicrobial surveillance program, 1997–1999. Clin. Infect. Dis. 2001;32(Suppl 2):S114-S132. DOI: 10.1086/320184
Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. Theevolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc.Natl. Acad. Sci. U.S.A. 2002;99(11):7687-92. DOI: 10.1073/pnas.122108599
Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureusinfections : A review of case updating and clinical features. J. Adv. Res.2020;21(January):169-76. DOI: 10.1016/j.jare.2019.10.005
Rowland SJ, Dyke KGH. Tn552, a novel transposable element fromStaphylococcus aureus. Mol. Microbiol. 1990;4:961-75. DOI: 10.1111/j.1365-2958.1990.tb00669.x
Haaber J, Penadés JR, Ingmer H. Transfer of Antibiotic Resistance inStaphylococcus aureus. Trends Microbiol. 2017;25(11):893-905. DOI:10.1016/j.tim.2017.05.011
Maiques E, Úbeda C, Campoy S, Salvador N, Lasa Í, Novick RP, et al. β-Lactamantibiotics induce the SOS response and horizontal transfer of virulence factors inStaphylococcus aureus. J. Bacteriol. 2006;188(7):2726-9. DOI:10.1128/jb.188.7.2726-2729.2006
Podlesek Z, Žgur Bertok D. The DNA Damage Inducible SOS Response Is a KeyPlayer in the Generation of Bacterial Persister Cells and Population WideTolerance. Front. Microbiol. 2020;11(August):1785. DOI:10.3389/fmicb.2020.01785
Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials andresistance-modifying agents. Nat. Prod. Rep. 2012;29(9):1007-21. DOI:10.1039/c2np20035j
Lahmar A, Bedoui A, Mokdad-Bzeouich I, Dhaouifi Z, Kalboussi Z, Cheraif I, etal. Reversal of resistance in bacteria underlies synergistic effect of essential oilswith conventional antibiotics. Microb. Pathog. 2017;106(May):50-9. DOI: 10.1016/j.micpath.2016.10.018
Chaves TP, Pinheiro REE, Melo ES, Soares MJ dos S, Souza JSN, Andrade TBde, et al. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactamactivity against Staphylococcus aureus and Escherichia coli resistant strains. Ind.Crops Prod. 2018;112 (February):70-4. DOI: 10.1016/j.indcrop.2017.10.048
Jugreet BS, Mahomoodally MF. Essential oils from 9 exotic and endemicmedicinal plants from Mauritius shows in vitro antibacterial and antibioticpotentiating activities. South African J Bot. 2020;132(August):355-62. DOI:10.1016/j.sajb.2020.05.001
Sibandze GF, Stapleton P, Gibbons S. Constituents of two Dioscorea speciesthat potentiate antibiotic activity against MRSA. J Nat Prod. 2020;83(5):1696-1700. DOI: 10.1021/acs.jnatprod.9b01006
Seebaluck-Sandoram R, Lall N, Fibrich B, van Staden AB, Mahomoodally F.Antibiotic-potentiating activity, phytochemical profile, and cytotoxicity ofAcalypha integrifolia Willd. (Euphorbiaceae). J. Herb Med. 2018;11(March):53-9.DOI: 10.1016/j.hermed.2017.03.005
Eloff JN. A sensitive and quick microplate method to determine the minimalinhibitory concentration of plant extracts for bacteria. Planta Med.1998;64(8):711-13. DOI: https://doi.org/10.1055/s-2006-957563
Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of naturalproducts: how to develop a stronger in vitro “Proof-of-Concept”. J.Ethnopharmacol. 2006;106(3):290-302. DOI: 10.1016/j.jep.2006.04.003
R Core Team. R: A Language and environment for statistical computing.Vienna, Austria: R foundation for statistical computing; 2013 [acceso28/09/2021]. Disponible en. https://www.r-project.org
Morais-Braga MFB, Sales DL, Carneiro JNP, Machado AJT, dos Santos ATL, deFreitas MA, et al. Psidium guajava L. and Psidium brownianum Mart ex DC:Chemical composition and anti-Candida effect in association with fluconazole.Microb. Pathog. 2016;95:200-07. DOI: 10.1016/j.micpath.2016.04.013
Morais-Braga MFB, Carneiro JNP, Machado AJT, dos Santos ATL, Sales DL,Lima LF, et al. Psidium guajava L., from ethnobiology to scientific evaluation:Elucidating bioactivity against pathogenic microorganisms. J. Ethnopharmacol.2016;194:1140-52. DOI: 10.1016/j.jep.2016.11.017
Bueno J, Escobar P, Martínez JR, Leal SM, Stashenko EE. Composition of threeessential oils, and their mammalian cell toxicity and antimycobacterial activityagainst drug resistant-tuberculosis and nontuberculous mycobacteria strains. Nat.Prod. Commun. 2011;6:1743–1448. DOI: 10.1177/1934578X1100601143
Szewczyk K, Zidorn C. Ethnobotany, phytochemistry, and bioactivity of thegenus Turnera (Passifloraceae) with a focus on damiana–Turnera diffusa. J.Ethnopharmacol. 2014;152:424-43. DOI: 10.1016/j.jep.2014.01.019
Burt S. Essential oils: their antibacterial properties and potential applicationsin foods–a review. Int. J. Food Microbiol. 2004;94:223-53. DOI:10.1016/j.ijfoodmicro.2004.03.022
Pino JA, Bello A, Urquiola A, Aguaro J, Marbot R. Leaf oils of Psidiumcymosum Urb. and Psidium sartorianum Niedz. from Cuba. J. Essent. Oil Res.2003;15:184-8. DOI: 10.1080/10412905.2003.9712107
Stashenko E, Martínez JR. The expression of biodiversity in the secondarymetabolites of aromatic plants and flowers growing in Colombia. In: Potential ofessential oils, Chapter 4, IntechOpen Publisher, London, UK, 2018:59-86. DOI:10.5772/intechopen.78001
Coutinho HDM, Costa JGM, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP.Herbal therapy associated with antibiotic therapy: potentiation of the antibioticactivity against methicillin– resistant Staphylococcus aureus by Turnera ulmifoliaL. BMC Compl. Alternative Med. 2009;9:13. DOI: 10.1186/1472-6882-9-13