2022, Number 1
<< Back Next >>
Rev Cuba Endoc 2022; 33 (1)
The challenge for the development of the central nervous system in human reproduction associated with diabetes
Clapes HS, Fernández RT, Prado GK
Language: Spanish
References: 49
Page:
PDF size: 255.92 Kb.
ABSTRACT
Introduction:
Children, whose mothers suffer from diabetes, have higher incidence of neurodevelopmental disorders such as autism, low cognitive activity, attention deficit, schizophrenia and other autism spectrum diseases.
Objective:
To explain the molecular mechanisms that underlie the appearance of neurodevelopmental disorders in children of pregnant women with diabetes.
Methods:
A review of the literature that appears in Google, MEDLINE/PubMed and SciELO electronic databases, was carried out. Articles published from 2000 to 2020 were reviewed. The keywords used were hyperglycemia, neurodevelopment, congenital malformations, and epigenetics.
Results:
The high risk that hyperglycemia represents during intrauterine development is highlighted. The relative risk that children of mothers with pregestational diabetes have of presenting malformations of the central nervous system is 15.5 times higher than in pregnant women without diabetes. The hippocampus is especially sensitive to changes in glucose levels. Maternal diabetes can leave negative print on the ability to process information, acquire skills and have appropriate social behavior in their children.
Conclusions:
Alterations in metabolism conditioned by hyperglycemia, oxidative stress, low-grade inflammation and epigenetic modifications create a fatal mechanism that supports abnormal development in children of pregnant women with diabetes.
REFERENCES
Barker DJ. The fetal origins of coronary heart disease. European Heart J. 1997;18(6),883-4. DOI: https://doi.org/10.1093/oxfordjournals.eurheartj.a015368
Mandy M, Nyirenda M. Developmental origins of health and disease: the relevance to developing nations. Internat Health. 2018;10(2):66-70. DOI: https://doi.org/10.1093/inthealth/ihy006FAO
Salbaum JM, Kappen C. Diabetic embryopathy: A role for the epigenome? Birth Defects Res A Clin Mol Teratol. 2011;91(8):770-80. DOI: https://doi.org/10.1002/bdra.20807
James Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab. 2019;104(9):4225-38. DOI: https://doi.org/10.1210/jc.2018-02778
Fraser A, Lawlor DA. Long-term health outcomes in offspring born to women with diabetes in pregnancy. Curr Diab Rep. 2014;14(5):489. DOI: https://doi.org/10.1007/s11892-014-0489-x
Kappen C. Modeling anterior development in mice: Diet as modulator of risk for neural tube defects. Am J Med Genet C Semin Med Genet. 2015;0(4):333-56. DOI: https://doi.org/10.1002/ajmg.c.31380
Kong L, Norstedt G, Schalling M, Gissler M, Lavebratt C. The risk of offspring psychiatric disorders in the setting of maternal obesity and diabetes. Pediatrics. 2018;142(3):e20180776. DOI: https://doi.org/10.1542/peds.2018-0776
Guo D, Ju R, Zhou Q, Mao J, Tao H, Jing H, et al. Association of maternal diabetes with attention deficit/hyperactivity disorder (ADHD) in offspring: A meta-analysis and review. Diabet Research Clin Pract. 2020. DOI: https://doi.org/10.1016/j.diabres.2020.108269
Edlow AG, Guedj F, Sverdlov D, Pennings JL, Bianchi DW. Significant effects of maternal diet during pregnancy on the murine fetal brain transcriptome and offspring behavior. Front Neurosci. 2019;13:1335. DOI: https://doi.org/10.3389/fnins.2019.01335
Adane AA, Mishra GD, Tooth LR. Diabetes in pregnancy and childhood cognitive development: A systematic review. Pediatrics. 2016;137(5):e20154234. DOI: https://doi.org/10.1542/peds.2015-4234
Cunnane SC, Crawford MA. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):17-26. DOI: https://doi.org/10.1016/s1095-6433(03)00048-5
Duelli R, Kuschinsky W. Brain glucose transporters: Relationship to local energy demand. Physiology. 2001;16(2):71-6. DOI: https://doi.org/10.1152/physiologyonline.2001.16.2.71
Shah K, De Silva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer's disease. Int J Mol Sci. 2012;13(10):12629-55. DOI: https://doi.org/10.3390/ijms131012629
Battin M, Wouldes TA, Rowan J. Neurodevelopmental outcome in offspring born following gestational diabetes. Nutr Diet Maternal Diabetes. 2017;341-54. DOI: https://doi.org/10.1007/978-3-319-56440-1_27
American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes 2018. Diabetes Care. 2018;41(Suppl. 1):S13-27. DOI: https://doi.org/10.2337/dc18-S002
Oguntibeju O. Type 2 diabetes mellitus, oxidative stress and inflmmation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019 [acceso: 18/10/2021];15(3):45-63. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31333808/
Armengaud JB, Simeoni U. Offspring of mothers with hyperglycemia in pregnancy: Short-term consequences for newborns and infants. Gestational Diabetes. 2019;28:194-200. DOI: https://doi.org/10.1159/000480175
Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res C Embryo Today. 2015;105(1):53-72. DOI: https://doi.org/10.1002/bdrc.21090
Eriksson UJ, Wentzel P. The status of diabetic embryopathy. Ups J Med Sci. 2016;121(2):96-112. DOI: https://doi.org/10.3109/03009734.2016.1165317
Carpita B, Muti D, Dell'Osso L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid Med Cell Longev. 2018;3717215. DOI: https://doi.org/10.1155/2018/3717215
Van Lieshout RJ, Voruganti LP. Medical subject headings: diabetes mellitus; schizophrenia; fetal hypoxia. J Psychiatry Neurosci. 2018 [acceso: 18/10/2021];33(5):395-404. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18787655/
Wang X, Lu J, Xie W, Lu X, Liang Y, Li M, et al. Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2. Proc Natl Acad Sci USA. 2019:116(47):23743-52. DOI: https://doi.org/10.1073/pnas.1912625116
Georgieff MK. Iron deficiency in pregnancy. Americ J Obstetric Gynecol. 2020. DOI: https://doi.org/10.1016/j.ajog.2020.03.006
Verner AM, Manderson J, Lappin TRJ, McCance DR, Halliday HL, Sweet DG. Influence of maternal diabetes mellitus on fetal iron status. Arch Dis Child Fetal Neonatal Ed. 2007;92(5):399-401. DOI: https://doi.org/10.1136/adc.2006.097279
Ya Jin, Guang Wang, Sha-sha Han, Mei-yao He, Xin Cheng, Zheng-lai Ma, et al. Effects of oxidative stress on hyperglycaemia induced brain malformations in a diabetes mouse model. Exp Cell Res. 2016:347(1);201-11. DOI: https://doi.org/10.1016/j.yexcr.2016.08.002
Ter Braak EW, Evers IM, Erkelens DW, Visser GH. Maternal hypoglycemia during pregnancy in type 1 diabetes: maternal and fetal consequences. Diabetes Metab Res Rev. 2002;18(2):96-105. DOI: https://doi.org/10.1002/dmrr.271
Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res. 2013;2:151. DOI: https://doi.org/10.12688/f1000research.2-151.v1
Pani L, Horal M, Loeken MR. Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3- dependent development and tumorigenesis. Genes Dev. 2002;16(6):676-80. DOI: https://doi.org/10.1101/gad.969302
Loeken MR. Mechanisms of congenital malformations in pregnancies with preexisting diabetes defects. Current Diabetes Reports. 2020;20:54. DOI: https://doi.org/10.1007/s11892-020-01338-4
Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov. 2013;8(1):35-48. DOI: https://doi.org/10.1517/17460441.2013.736485
Castori M. Diabetic embryopathy: A developmental perspective from fertilization to adulthood. Mol Syndromol. 2013;4(1-2):74-86. DOI: https://doi.org/10.1159/000345205
Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: Early and long-term outcomes on the offspring and the concept of "metabolic memory". Exp Diabetes Res. 2011;2011:1-12. DOI: https://doi.org/10.1155/2011/218598
Camprubi M, Campoy C, García L, López Pedrosa JM, Rueda R, Martin MJ. Maternal diabetes and cognitive performance in the offspring: A systematic review and metaanalysis. PLoS One. 2015;10(11):e0142583. DOI: https://doi.org/10.1371/journal.pone.0142583
Rizzo HE, Escaname EN, Alana NB, Lavender E, Gelfond J, Fernandez R, et al. Maternal diabetes and obesity influence the fetal epigenome in a largely Hispanic population. Clinical Epigenetics. 2020;12:1. DOI: https://doi.org/10.1186/s13148-020-0824
Wei D, Loeken MR. Increased DNA Methyltransferase 3b (Dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes. 2014;63(10):3512-22. DOI: https://doi.org/10.2337/db14-0231
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxidative Med Cellular Longevity. 2015;1-17. DOI: https://doi.org/10.1155/2015/875961
Kong L, Chen X, Gissler M, Lavebratt C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes (Lond). 2020. DOI: https://doi.org/10.1038/s41366-020-0609-4
Li M, Francis E, Hinkle SN, Ajjarapu AS, Zhang C. Preconception and prenatal nutrition and neurodevelopmental disorders: A systematic review and metaanalysis. Nutrients. 2019;11(7):1628. DOI: https://doi.org/10.3390/nu11071628
Villalobos Labra R, Silva L, Subiabre M, Araos J, Salsoso R, Fuenzalida B, et al. Akt/mTOR role in human foetoplacental vascular insulin resistance in diseases of pregnancy. J Diabetes Res. 2017;2017:5947859. DOI: https://doi.org/10.1155/2017/5947859
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their roles in embryonic heart development and pathogenesis of congenital heart defects in maternal diabetes. Antioxidants (Basel). 2019;8(10):436. DOI: https://doi.org/10.3390/antiox8100436
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. DOI: https://doi.org/10.3389/fnins.2018.00825
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. DOI: https://doi.org/10.1038/s41574-018-0048-7
Groen B, Links TP, van den Berg PP, de Vos P, Faas MM. The role of autoimmunity in women with type 1 diabetes and adverse pregnancy outcome: A missing link. Immunobiology. 2019;224(2):334-8. DOI: https://doi.org/10.1016/j.imbio.2019.02.003
Cadaret CN, Posont RJ, Beede KA, Riley HE, Loy JD, Yates DT. Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term. Transl Anim Sci. 2019;3(2):txz037. DOI: https://doi.org/10.1093/tas/txz037
Larqué E, Pagán A, Prieto MT, Blanco JE, Gil Sánchez A, Zornoza Moreno, et al. Placental fatty acid transfer: A key factor in fetal growth. Ann Nutr Metab. 2014;64(3-4):247-53. DOI: https://doi.org/10.1159/000365028
Correia B, Sousa MI, Ramalho Santos J. The mTOR pathway in reproduction from gonadal function to developmental coordination. Reproduction. 2020;159(4):R173-88. DOI: https://doi.org/10.1530/REP-19-0057
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781-3. DOI: https://doi.org/10.1101/gad.178760
Mayo de Andrés S. Búsqueda e identificación de nuevas causas genéticas o epigenéticas de trastornos del neurodesarrollo [Tesis Doctoral]. España: Universidad de Valencia; 2015.
Kowluru R. Mohammad G. Epigenetic modifications in diabetes. Metabolism. 2022;126. DOI: https://doi.org/10.1016/j.metabol.2021.154920