2023, Number 2
<< Back Next >>
Rev Hematol Mex 2023; 24 (2)
Hematological adaptation of Andean dwellers to high altitude
Amaru R, Quispe T, Mamani LF, Mancilla S, Valencia JC, Patón D, Carrasco M
Language: Spanish
References: 32
Page: 52-67
PDF size: 786.74 Kb.
ABSTRACT
Objective: To evaluate the association of EPAS1, EGLN1, PKLR and NFkB1 gene
haplotypes between Aymara and Tibetans as well as their relationship to high altitude
adaptation.
Materials and Methods: Prospective longitudinal study concerning haplotypes
EPAS1 (5 denisovan like SNPs, 5 non-denisovan like SNPs), EGLN1 (PHD2
D4E,
PHD2
C127S), PKLR (7 SNPs) and NFkB1 (2 SNPs) present in Bolivian Andean Aymara
and Tibetans. Haplotypes were also classified according to the metabolic pathways in
which they take are engaged.
Results: It was observed that Andean Aymaras do not have the denisovan-like
EPAS1 and PHD2
D4E haplotypes; however, they share 2 out of 5 non-denisovan like
EPAS1variants. PHD2
C127S is at low prevalence (heterozygous form), PKLR is 50% and
NFkB1 is 91%.
Conclusions: Andean Aymaras and Tibetans share haplotypes that can be referred as
common genetic patterns, and they also have specific enriched haplotypes. Frequency
and interaction of these haplotypes into their signaling pathways suggest a partial and
complete hematological adaptation, respectively.
REFERENCES
Gonzales GF. Hemoglobina y testosterona: importancia enla aclimatación y adaptación a la altura. Rev Peru Med ExpSalud Pública 2011; 28 (1): 92-100.
Noel-Jorand M, Burnet H. Changes in human respiratorysensation induced by acute high altitude hypoxia. Neuroreport1994; 5 (13): 1561-6. doi: 10.1097/00001756-199408150-00005.
Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, etal. Evolutionary history of Tibetans inferred from wholegenomesequencing. PLoS Genetics 2017; 13 (4). https://doi.org/10.1371/journal.pgen.1006675.
Rademaker K, Hodgins G, Moore K, Zarrillo S, Miller C,Bromley GR, et al. Paleoindian settlement of the highaltitudePeruvian Andes. Science 2014; 346 (6208): 466-9.https://doi.org/10.1126/science.1258260.
Julian CG, Moore LG. Human genetic adaptation to highaltitude: Evidence from the Andes. Genes 2019; 10 (2):150. doi: 10.3390/genes10020150.
Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, etal. Natural selection on EPAS1 (HIF2α) associated with lowhemoglobin concentration in Tibetan highlanders. ProceedNational Acad Sci 2010; 107 (25): 11459-64. https://doi.org/10.1073/pnas.1002443107.
Ronen R, Zhou D, Bafna V, Haddad GG. The genetic basis ofchronic mountain sickness. Physiology 2014; 29 (6): 403-12.doi: 10.1152/physiol.00008.2014.
Simonson TS. Altitude adaptation: a glimpse through variouslenses. High Alt Med Biol 2015; 16 (2): 125-37. doi:10.1089/ham.2015.0033.
Bigham AW, Lee FS. Human high-altitude adaptation:forward genetics meets the HIF pathway. Genes Dev 2014;28 (20): 2189-204. doi: 10.1101/gad.250167.114.
Moore LG, Brewer GJ. Beneficial effect of rightward hemoglobin-oxygen dissociation curve shift for short-term highaltitudeadaptation. J Lab Clin Med 1981; 98 (1): 145-54.
Dempsey JA. With hemoglobin as with politics‐should weshift right or left? J Physiol 2020. doi: 10.1113/JP279555.
Milledge J. Hypobaria: High altitude, aviation physiology,and medicine. Cotes’ Lung Function 2020: 615-37.
Semenza GL. The genomics and genetics of oxygenhomeostasis. Ann Rev Genomics Hum Genet 2020; 21:183-204. doi: 10.1146/annurev-genom-111119-073356.
Samanta D, Semenza GL. Metabolic adaptation of cancerand immune cells mediated by hypoxia-inducible factors.Biochim Biophys Acta Rev Cancer 2018; 1870 (1): 15-22.doi: 10.1016/j.bbcan.2018.07.002.
Tashi T, Reading NS, Wuren T, Zhang X, Moore LG, Hu H, etal. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphismlowers hemoglobin concentration in Tibetan highlanders.J Mol Med 2017; 95 (6): 665-70. doi: 10.1007/s00109-017-1519-3.
Prabhakar NR. 2019 Nobel Prize in Physiology or Medicine.Am Physiol Soc 2020. https://doi.org/10.1152/physiol.00001.2020.
Chan X, Eoh J, Volkova E, Black R, Fang L, Gorashi R, et al. HIF2Again-of-function mutation modulates the stiffness of smoothmuscle cells and compromises vascular mechanics. iScience2021; 24 (4): 102246. doi: 10.1016/j.isci.2021.102246.
Huerta-Sánchez E, Jin X, Bianba Z, Peter BM, VinckenboschN, Liang Y, et al. Altitude adaptation in Tibetans causedby introgression of Denisovan-like DNA. Nature 2014;512 (7513): 194-7. https://doi.org/10.1038/nature13408.
Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S,Tashi T, et al. A genetic mechanism for Tibetan high-altitudeadaptation. Nature Genetics 2014; 46 (9): 951. https://doi.org/10.1038/ng.306.
Simonson TS, Yang Y, Huff CD, Yun H, Qin G, WitherspoonDJ, et al. Genetic evidence for high-altitude adaptationin Tibet. Science 2010; 329 (5987): 72-5. doi: 10.1126/science.1189406.
Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, etal. Sequencing of 50 human exomes reveals adaptation tohigh altitude. Science 2010; 329 (5987): 75-8. doi: 10.1126/science.1190371.
Amaru R, Song J, Reading NS, Gordeuk VR, Quispe T, MooreL, et al. Erythroid and cardiovascular high altitude-selectedhaplotypes in Andean aymaras and Tibetans. Blood. 2017;130 (Supplement 1): 2205. https://doi.org/10.1182/blood.V130.Suppl_1.2205.2205.
Song J, Abello V, Amaru R, Sergueeva A, Isakova J, KosinskiPA, et al. Tibetan enriched PKLR variant is beneficial to highaltitude adaption by improving oxygen delivery. Blood2018; 132 (Supplement 1): 1027. https://doi.org/10.1182/blood-2018-99-117389.
Bigham AW, Julian CG, Wilson MJ, Vargas E, Browne VA,Shriver MD, et al. Maternal PRKAA1 and EDNRA genotypesare associated with birth weight, and PRKAA1 with uterineartery diameter and metabolic homeostasis at high altitude.Physiol Genomics 2014; 46 (18): 687-97. doi: 10.1152/physiolgenomics.00063.2014.
Amaru R, Amaru A, Miguez H, Gina T, Mamani J, Vera O, etal. Bolivian aymara natives with chronic mountain sicknesshave autonomous BFU-E growth. Blood 2015; 126: 5206.https://doi.org/10.1182/blood.V126.23.5206.5206.
Song J, Han S, Amaru R, Quispe T, Kim D, Crawford JE, etal. Novel form of alternative splicing of NFKB1. Its role inpolycythemia and adaptation to high altitude in AndeanAymara. Blood 2018; 132 (Supplement 1): 2316. https://doi.org/10.1182/blood-2018-99-117463.
Crawford JE, Amaru R, Song J, Julian CG, Racimo F, Cheng JY,et al. Natural selection on genes related to cardiovascularhealth in high-altitude adapted Andeans. Am J Human Genet2017; 101 (5): 752-67. doi: 10.1016/j.ajhg.2017.09.023.
Figueroa Y, Chan AK, Ibrahim R, Tang Y, Burow ME, Alam J,Scandurro AB, Beckman BS. NF-kappaB plays a key role inhypoxia-inducible factor-1-regulated erythropoietin geneexpression Exp Hematol 2002; 30: 1419-27. doi: 10.1016/s0301-472x(02)00934-7.
Chen P-S, Chiu W-T, Hsu P-L, Lin S-C, Peng I-C, Wang C-Y,et al. Pathophysiological implications of hypoxia in humandiseases. J Biomed Sci 2020; 27: 1-19. https://doi.org/10.1186/s12929-020-00658-7.
Rees JS, Castellano S, Andrés AM. The genomics of humanlocal adaptation. Trends Genet 2020. doi: 10.1016/j.tig.2020.03.006.
Key FM, Fu Q, Romagné F, Lachmann M, Andrés AM. Humanadaptation and population differentiation in the lightof ancient genomes. Nature Communications 2016; 7 (1):1-11. https://doi.org/10.1038/ncomms10775.
Shestakova A, Lorenzo F, Tashi T, Lanikova L, WittwerCT, Prchal JT. Tibetan PHD2 D4E high altitude adaptedgene can be rapidly detected by high resolution meltingassay. Blood 2014. https://doi.org/10.1182/blood.V124.21.4875.4875.