2022, Number 1
<< Back Next >>
MEDICC Review 2022; 24 (1)
Wound chronicity, impaired immunity and infection in diabetic patients
Rodrίguez-Rodrίguez N, Martínez-Jiménez I, García-Ojalvo A, Mendoza-Mari Y, Guillén-Nieto G, Armstrong DG, Berlanga-Acosta J
Language: English
References: 276
Page: 44-58
PDF size: 452.74 Kb.
ABSTRACT
BACKGROUND Diabetic foot ulcers are a common diabetic complication leading to alarming figures of amputation, disability, and early mortality. The diabetic glucooxidative environment impairs the healing response, promoting the onset of a ‘wound chronicity phenotype’. In 50% of ulcers, these non-healing wounds act as an open door for developing infections, a process facilitated by diabetic patients’ dysimmunity. Infection can elicit biofilm formation that worsens wound prognosis. How this microorganism community is able to take advantage of underlying diabetic conditions and thrive both within the wound and the diabetic host is an expanding research field.
OBJECTIVES 1) Offer an overview of the major cellular and molecular derangements of the diabetic healing process versus physiological cascades in a non-diabetic host. 2) Describe the main immunopathological aspects of diabetics’ immune response and explore how these contribute to wound infection susceptibility. 3) Conceptualize infection and biofilim in diabetic foot ulcers and analyze their dynamic interactions with wound bed cells and matrices, and their systemic effects at the organism level. 4) Offer an integrative conceptual framework of wound–dysimmunity–infection–organism damage.
EVIDENCE AQUISITION We retrieved 683 articles indexed in Medline/PubMed, SciELO, Bioline International and Google Scholar. 280 articles were selected for discussion under four major subheadings: 1) normal healing processes, 2) impaired healing processes in the diabetic population, 3) diabetic dysimmunity and 4) diabetic foot infection and its interaction with the host.
DEVELOPMENT The diabetic healing response is heterogeneous, torpid and asynchronous, leading to wound chronicity. The accumulation of senescent cells and a protracted inflammatory profile with a pro-catabolic balance hinder the proliferative response and delay re-epithelialization. Diabetes reduces the immune system’s abilities to orchestrate an appropriate antimicrobial response and offers ideal conditions for microbiota establishment and biofilm formation. Biofilm–microbial entrenchment hinders antimicrobial therapy effectiveness, amplifies the host’s pre-existing immunodepression, arrests the wound’s proliferative phase, increases localized catabolism, prolongs pathogenic inflammation and perpetuates wound chronicity. In such circumstances the infected wound may act as a proinflammatory and pro-oxidant organ superimposed onto the host, which eventually intensifies peripheral insulin resistance and disrupts homeostasis.
CONCLUSIONS The number of lower-limb amputations remains high worldwide despite continued research efforts on diabetic foot ulcers. Identifying and manipulating the molecular drivers underlying diabetic wound healing failure, and dysimmunity-driven susceptibility to infection will offer more effective therapeutic tools for the diabetic population.
REFERENCES
Berlanga-Acosta JA, Guillén-Nieto GE,Rodríguez-Rodríguez N, Mendoza-Mari Y,Bringas-Vega ML, Berlanga-Saez JO, et al.Cellular senescence as the pathogenic hubof diabetes-related wound chronicity. FrontEndocrinol (Lausanne). 2020 Sep 16;11:573032.DOI: 10.3389/fendo.2020.573032
Iraj B, Khorvash F, Ebneshahidi A, Askari G.Prevention of diabetic foot ulcer. Int J Prev Med.2013 Mar;4(3):373–6.
Rodrigues Costa RH, Anício Cardoso N, ProcópioRJ, Navarro TP, Dardik A, de Loiola Cisneros L.Diabetic foot ulcer carries high amputation andmortality rates, particularly in the presence ofadvanced age, peripheral artery disease andanemia. Diabetes Metabol Syndr. 2017 Dec;11Suppl 2:S583–S7.
van Netten JJ, Bus SA, Apelqvist J, Lipsky BA,Hinchliff e RJ, Game F, et al. Defi nitions andcriteria for diabetic foot disease. Diabetes MetabRes Rev. 2020 Mar;36 Suppl 1:e3268. DOI:10.1002/dmrr.3268
Lin C-W, Armstrong DG, Lin C-H, Liu P-H,Hung S-Y, Lee S-R, et al. Nationwide trends inthe epidemiology of diabetic foot complicationsand lower-extremity amputation over an8-year period. BMJ Open Diabetes Res Care.2019 Oct 11;7(1):e000795. DOI: 10.1136/bmjdrc-2019-000795
Armstrong DG, Boulton AJM, Bus SA. Diabeticfoot ulcers and their recurrence. N Engl J Med.2017 Jun 15;376(24):2367–75. DOI: 10.1056/NEJMra1615439
Armstrong DG, Wrobel J, Robbins JM. GuestEditorial: are diabetes-related wounds andamputations worse than cancer? Int Wound J.2007 Dec;4(4):286–7. DOI: 10.1111/j.1742-481X.2007.00392.x
Martínez-De Jesús FR, Ramos-De la MedinaA, Remes-Troche JM, Armstrong DG, Wu SC,Lázaro Martínez JL, et al. Effi cacy and safetyof neutral pH superoxidised solution in severediabetic foot infections. Int Wound J. 2007Dec;4(4):353–62. DOI: 10.1111/j.1742-481X.2007.00363.x
Shin JY, Roh S-G, Sharaf B, Lee N-H. Risk ofmajor limb amputation in diabetic foot ulcer andaccompanying disease: a meta-analysis. J PlastReconstr Aesthet Surg. 2017 Dec;70(12):1681–8.
Armstrong DG, Swerdlow MA, Armstrong AA,Conte MS, Padula WV, Bus SA. Five yearmortality and direct costs of care for people withdiabetic foot complications are comparable tocancer. J Foot Ankle Res. 2020 Mar 24;13(1):16.
Berlanga-Acosta J, Schultz GS, López-MolaE, Guillén-Nieto G, García-Siverio M, Herrera-Martínez L. Glucose toxic eff ects on granulationtissue productive cells: the diabetics’ impairedhealing. BioMed Res Int. 2013;2013:256043.DOI: 10.1155/2013/256043
Falanga V. Wound healing and its impairmentin the diabetic foot. Lancet. 2005 Nov12;366(9498):1736–43.
Ramsey SD, Newton K, Blough D, McCullochDK, Sandhu N, Reiber GE, et al. Incidence,outcomes, and cost of foot ulcers in patients withdiabetes. Diabetes Care. 1999 Mar;22(3):382–7.
Prompers L, Huijberts M, Apelqvist J, Jude E,Piaggesi A, Bakker K, et al. High prevalence ofischaemia, infection and serious comorbidity inpatients with diabetic foot disease in Europe.Baseline results from the Eurodiale study.Diabetologia. 2007 Jan;50(1):18–25.
Gould LJ, Abadir PM, White-Chu EF. Age, frailty,and impaired wound healing. Principles PractGeriatric Surg. 2020:465–82.
Namgoong S, Jung S, Han SK, Jeong SH, DhongES, Kim WK. Risk factors for major amputation inhospitalised diabetic foot patients. Int Wound J.2016 Mar;13 (Suppl 1):13–9.
Kim SY, Kim TH, Choi JY, Kwon YJ, Choi DH, KimKC, et al. Predictors for amputation in patientswith diabetic foot wound. Vasc Specialist Int.2018 Dec;34(4):109–16.
Sen P, Demirdal T, Emir B. Meta-analysis of riskfactors for amputation in diabetic foot infections.Diabetes Metab Res Rev. 2019 Oct;35(7):e3165.
Alkhatieb M, Mortada H, Aljaaly H. Managementof a diffi cult-to-treat diabetic foot woundcomplicated by osteomyelitis: a case study. CaseRep Surg. 2020 Jun 15;2020:3971581.
Dryden M, Baguneid M, Eckmann C, CormanS, Stephens J, Solem C, et al. Pathophysiologyand burden of infection in patients with diabetesmellitus and peripheral vascular disease: focuson skin and soft-tissue infections. Clin MicrobiolInfect. 2015 Sep;21 Suppl 2:S27–S32.
Casqueiro J, Casqueiro J, Alves C. Infectionsin patients with diabetes mellitus: a review ofpathogenesis. Indian J Endocrinol Metab. 2012Mar;16 Suppl 1(Suppl 1):S27–36.
Peleg AY, Weerarathna T, McCarthy JS,Davis TM. Common infections in diabetes:pathogenesis, management and relationshipto glycaemic control. Diabetes Metab Res Rev.2007 Jan;23(1):3–13.
Premanath R, Suresh S, Alva PP, Akash S.Biofi lm forming abilities of microorganismsassociated with diabetic wound infection: astudy from a tertiary care hospital. BiomedicalPharmacol J. 2019 Jan 1;12(2):677–82.
Pouget C, Dunyach-Remy C, Pantel A, SchuldinerS, Sotto A, Lavigne JP. Biofi lms in diabetic footulcers: signifi cance and clinical relevance.Microorganisms. 2020 Oct 14;8(10):1580.
Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M,Moroni A, Ramstedt M, et al. Biofi lm formation–what we can learn from recent developments. JIntern Med. 2018 Oct;284(4):322–45.
Jneid J, Lavigne JP, La Scola B, Cassir N.The diabetic foot microbiota: a review. HumanMicrobiome J. 2017 Dec;5–6:1–6.
Campoccia D, Mirzaei R, Montanaro L,Arciola CR. Hijacking of immune defenses bybiofi lms: a multifront strategy. Biofouling. 2019Nov;35(10):1055–74.
Diabetes: an update on the pandemic andpotential solutions. In: Ali MK, Siegel KR,Chandrasekar E, Tandon N, Montoya PA,Mbanya JC, et al, editors. Cardiovascular,Respiratory and Related Disorders. Washington,D.C.: The International Bank for Reconstructionand Development; The World Bank; 2017 Nov17. Chapter 12.
Jenkins TC, Knepper BC, Jason Moore S,Saveli CC, Pawlowski SW, Perlman DM, et al.Comparison of the microbiology and antibiotictreatment among diabetic and nondiabeticpatients hospitalized for cellulitis or cutaneousabscess. J Hosp Med. 2014 Dec;9(12):788–94.
Delamaire M, Maugendre D, Moreno M, Le GoffMC, Allannic H, Genetet B. Impaired leucocytefunctions in diabetic patients. Diabet Med. 1997Jan;14(1):29–34.
Nojima I, Eikawa S, Tomonobu N, Hada Y,Kajitani N, Teshigawara S, et al. Dysfunction ofCD8+ PD-1+ T cells in type 2 diabetes caused bythe impairment of metabolism-immune axis. SciRep. 2020 Sep 10;10(1):14928.
Price CL, Al Hassi HOS, English NR,Blakemore AIF, Stagg AJ, Knight SC.Methylglyoxal modulates immune responses:relevance to diabetes. J Cell Mol Med. 2010Jun;14(6B):1806–15.
Ozer A, Altuntas CZ, Izgi K, Bicer F, Hultgren SJ,Liu G, et al. Advanced glycation end productsfacilitate bacterial adherence in urinary tractinfection in diabetic mice. Pathog Dis. 2015Jul;73(5):ftu004.
Creusot RJ, Postigo-Fernández J, TeteloshviliN. Altered function of antigen-presenting cellsin type 1 diabetes: a challenge for antigenspecific immunotherapy? Diabetes. 2018Aug;67(8):1481–94.
Noor S, Khan RU, Ahmad J. Understanding diabeticfoot infection and its management. Diabetes MetabSyndr. 2017 Apr–Jun;11(2):149–56.
Zubair M. Prevalence and interrelationships offoot ulcer, risk-factors and antibiotic resistance infoot ulcers in diabetic populations: a systematicreview and meta-analysis. World J Diabetes.2020 Mar 15;11(3):78–83.
Wolcott RD, Rhoads DD. A study of biofi lm-basedwound management in subjects with critical limbischaemia. J Wound Care. 2008 Apr;17(4):145–8, 150–2, 154–5.
Wolcott RD, Cox S. More eff ective cell-basedtherapy through biofi lm suppression. J WoundCare. 2013 Jan;22(1):26–31.
Mohandas A, Anisha BS, Chennazhi KP,Jayakumar R. Chitosan–hyaluronic acid/VEGFloaded fi brin nanoparticles composite spongesfor enhancing angiogenesis in wounds. ColloidsSurfaces B Biointerfaces. 2015 Mar 1;127:105–13.
Anisha BS, Biswas R, Chennazhi K, JayakumarR. Chitosan–hyaluronic acid/nano silver compositesponges for drug resistant bacteria infecteddiabetic wounds. Int J Biol Macromol. 2013Nov;62:310–20.
Patel S, Srivastava S, Singh MR, Singh D.Mechanistic insight into diabetic wounds:Pathogenesis, molecular targets and treatmentstrategies to pace wound healing. BiomedPharmacother. 2019 Apr;112:108615.
Sorg H, Tilkorn DJ, Hager S, Hauser J,Mirastschijski U. Skin wound healing: an updateon the current knowledge and concepts. EurSurg Res. 2017;58(1–2):81–94.
Brown A. Phases of the wound healing process.Nurs Times. 2015 Nov 11–17;111(46):12–3.
Enoch S, Leaper DJ. Basic science of woundhealing. Surgery (Oxford). 2005 Feb 1;23(2):37–42.
Velnar T, Bailey T, Smrkolj V. The woundhealing process: an overview of the cellular andmolecular mechanisms. J Int Med Res. 2009Sep–Oct;37(5):1528–42.
Rodrigues M, Kosaric N, Bonham CA, GurtnerGC. Wound healing: a cellular perspective.Physiol Rev. 2019 Jan 1;99(1):665–706.
Landén NX, Li D, Ståhle M. Transition frominfl ammation to proliferation: a critical stepduring wound healing. Cell Mol Life Sci. 2016Oct;73(20):3861–85.
Gethin G. Understanding the infl ammatoryprocess in wound healing. British J CommunityNurs. 2012;17(Suppl 3):S17–S22.
Li J, Chen J, Kirsner R. Pathophysiology ofacute wound healing. Clin Dermatol. 2007 Jan–Feb;25(1):9–18.
Barrientos S, Stojadinovic O, Golinko MS, BremH, Tomic–Canic M. Growth factors and cytokinesin wound healing. Wound Repair Regen. 2008Sep–Oct;16(5):585–601.
Jorch SK, Kubes P. An emerging role forneutrophil extracellular traps in noninfectiousdisease. Nat Med. 2017 Mar 7;23(3):279–87.
Opneja A, Kapoor S, Stavrou EX. Contribution ofplatelets, the coagulation and fi brinolytic systemsto cutaneous wound healing. Thromb Res. 2019Jul;179:56–63.
Wong SL, Demers M, Martinod K, Gallant M,Wang Y, Goldfi ne AB, et al. Diabetes primesneutrophils to undergo NETosis, which impairswound healing. Nat Med. 2015 Jul;21(7):815–9.
Fadini GP, Menegazzo L, Rigato M, Scattolini V,Poncina N, Bruttocao A, et al. NETosis delaysdiabetic wound healing in mice and humans.Diabetes. 2016 Apr;65(4):1061–71.
Brinkmann V, Reichard U, Goosmann C, FaulerB, Uhlemann Y, Weiss DS, et al. Neutrophilextracellular traps kill bacteria. Science. 2004Mar;303(5663):1532–5.
Strbo N, Yin N, Stojadinovic O. Innate andadaptive immune responses in woundepithelialization. Adv Wound Care (NewRochelle). 2014 Jul;3(7):492–501.
Rodero MP, Khosrotehrani K. Skin woundhealing modulation by macrophages. Int J ClinExp Pathol. 2010 Jul 25;3(7):643–53.
Wilgus TA. Immune cells in the healing skinwound: infl uential players at each stage of repair.Pharmacol Res. 2008 Aug;58(2):112–6.
Novak ML, Koh TJ. Macrophage phenotypesduring tissue repair. J Leukocyte Biol. 2013Jun;93(6):875–81.
Mantovani A, Biswas SK, Galdiero MR, Sica A,Locati M. Macrophage plasticity and polarizationin tissue repair and remodelling. J Pathol. 2013Jan;229(2):176–85.
Minutti CM, Knipper JA, Allen JE, Zaiss DMW.Tissue-specifi c contribution of macrophagesto wound healing. Semin Cell Dev Biol. 2017Jan;61:3–11.
Trøstrup H, Laulund ASB, Moser C. Insightsinto host–pathogen interactions in biofi lminfectedwounds reveal possibilities for newtreatment strategies. Antibiotics (Basel). 2020 Jul10;9(7):396.
Häkkinen L, Larjava H, Koivisto L. Granulationtissue formation and remodeling. EndodontTopics. 2011 Mar;24(1):94–129.
Alhajj M, Bansal P, Goyal A. Physiology,Granulation Tissue [Internet]. Florida: StatPearlsPublishing LLC; 2020 Nov 2 [cited 2021 Jan 25].Available at: https://www.ncbi.nlm.nih.gov/books/NBK554402/
Guerra A, Belinha J, Jorge RN. Modelling skinwound healing angiogenesis: a review. J TheorBiol. 2018 Dec 14;459:1–17.
Tonnesen MG, Feng X, Clark RA, editors.Angiogenesis in wound healing. J InvestigDermatol Symp Proc. 2000 Dec;5(1):40–6.
Eming SA, Brachvogel B, Odorisio T, Koch M.Regulation of angiogenesis: wound healingas a model. Prog Histochem Cytochem.2007;42(3):115–70.
Madonna R, Balistreri CR, Geng Y-J, De CaterinaR. Diabetic microangiopathy: pathogeneticinsights and novel therapeutic approaches. VascPharmacol. 2017 Mar;90:1–7.
Okonkwo UA, DiPietro LA. Diabetes andwound angiogenesis. Int J Molecular Sci.2017;18(7):1419.
Desmoulière A, Chaponnier C, Gabbiani G.Tissue repair, contraction, and the myofi broblast.Wound Repair Regen. 2005 Jan–Feb;13(1):7–12.
Ibrahim MM, Chen L, Bond JE, Medina MA, RenL, Kokosis G, et al. Myofi broblasts contribute tobut are not necessary for wound contraction. LabInvestig. 2015 Dec;95(12):1429–38.
Ehrlich HP, Hunt TK. Collagen organizationcritical role in wound contraction. Adv WoundCare (New Rochelle). 2012 Feb;1(1):3–9.
Muñoz M, Vásquez B, del Sol M. Molecularmechanisms in the process of re-epithelizationin wound healing and the action of honeyin keratinocytes. Int J Morphol. 2020Dec;38(6):1700–6.
Ylivinkka I, Wickström SA. BETting against woundhealing. Nat Chem Biol. 2021 Mar;17(3):233–5.
Liarte S, Bernabé-García A, Nicolás FJ. Roleof TGF-in skin chronic wounds: a keratinocyteperspective. Cells. 2020 Jan 28;9(2):306.
Pastar I, Stojadinovic O, Yin NC, Ramirez H,Nusbaum AG, Sawaya A, et al. Epithelializationin wound healing: a comprehensive review.Adv Wound Care (New Rochelle). 2014 Jul1;3(7):445–64.
Martin P. Wound healing--aiming for perfect skinregeneration. Science. 1997 Apr 4;276(5309):75–81.
Cañedo-Dorantes L, Cañedo-Ayala M. Skinacute wound healing: a comprehensive review.Int J Infl am. 2019 Jun 2;2019:3706315. DOI:10.1155/2019/3706315
Laplante AF, Germain L, Auger FA, Moulin V.Mechanisms of wound re-epithelialization: hintsfrom a tissue-engineered reconstructed skinto long–standing questions. FASEB J. 2001Nov;15(13):2377–89.
Andasari V, Lü D, Swat M, Feng S, Spill F, ChenL, et al. Computational model of wound healing:EGF secreted by fi broblasts promotes delayedre-epithelialization of epithelial keratinocytes.Integr Biol (Cam). 2018 Oct 15;10(10):605–34.
Kirker KR, James GA. In vitro studies evaluatingthe eff ects of biofi lms on wound-healing cells: areview. APMIS. 2017 Apr;125(4):344–52.
Rousselle P, Braye F, Dayan G. Re-epithelializationof adult skin wounds: cellular mechanismsand therapeutic strategies. Adv Drug Deliv Rev.2019 Jun;146:344–65.
Xuan YH, Huang BB, Tian HS, Chi LS, DuanYM, Wang X, et al. High-glucose inhibitshuman fi broblast cell migration in woundhealing via repression of bFGF-regulatingJNK phosphorylation. PLoS One. 2014 Sep22;9(9):e108182.
Hehenberger K, Heilborn JD, Brismar K, HanssonA. Inhibited proliferation of fi broblasts derivedfrom chronic diabetic wounds and normal dermalfi broblasts treated with high glucose is associatedwith increased formation of L-lactate. WoundRepair Regen. 1998 Mar–Apr;6(2):135–41.
Spravchikov N, Sizyakov G, Gartsbein M, AcciliD, Tennenbaum T, Wertheimer E. Glucoseeff ects on skin keratinocytes: implications fordiabetes skin complications. Diabetes. 2001Jul;50(7):1627–35.
Yamaguchi Y, Yoshikawa K. Cutaneouswound healing: an update. J Dermatol. 2001Oct;28(10):521–34.
Garraud O, Hozzein WN, Badr G. Woundhealing: time to look for intelligent, ‘natural’immunological approaches? BMC Immunol.2017 Jun 21;18(Suppl 1):23.
Blakytny R, Jude E. The molecular biology ofchronic wounds and delayed healing in diabetes.Diabet Med. 2006 Jun;23(6):594–608.
Sorg H, Tilkorn DJ, Hager S, Hauser J,Mirastschijski U. Skin wound healing: an updateon the current knowledge and concepts. EurSurg Res. 2017;58(1–2):81–94.
Greenhalgh DG. The role of apoptosis inwound healing. Int J Biochem Cell Biol. 1998Sep;30(9):1019–30.
Stroncek JD, Reichert WM, Reichert WM, editors.Overview of wound healing in diff erent tissuetypes. In: Indwelling neural implants: strategiesfor contending with the in vivo environment.Florida: CRC Press/Taylor & Francis; 2008.Chapter 1. p. 3–41.
Lazarus GS, Cooper DM, Knighton DR,Percoraro RE, Rodeheaver G, Robson MC.Defi nitions and guidelines for assessment ofwounds and evaluation of healing. Wound RepairRegen. 1994 Jul;2(3):165–70.
Stupin VA, Gabitov RB, Sinelnikova TG, SilinaEV. Biological mechanisms of chronic wound anddiabetic foot healing: the role of collagen. SerbianJ Exp Clin Res. 2018 Dec 26;19(4):373–82.
Posnett J, Franks PJ. The burden of chronicwounds in the UK. Nurs Times. 2008 Jan22–28;104(3):44–5.
Lazaro J, Izzo V, Meaume S, Davies AH,Lobmann R, Uccioli L. Elevated levels of matrixmetalloproteinases and chronic wound healing:an updated review of clinical evidence. J WoundCare. 2016 May;25(5):277–87.
Alavi A, Sibbald RG, Mayer D, Goodman L,Botros M, Armstrong DG, et al. Diabetic footulcers: Part I. Pathophysiology and prevention. JAm Acad Dermatol. 2014 Jan;70(1):1.e1–18.
Galkowska H, Wojewodzka U, Olszewski WL.Chemokines, cytokines, and growth factors inkeratinocytes and dermal endothelial cells in themargin of chronic diabetic foot ulcers. WoundRepair Regen. 2006 Sep–Oct;14(5):558–65.
Borst SE. The role of TNF-α in insulin resistance.Endocrine. 2004 Mar–Apr;23(2–3):177–82.
Acosta JB, García del Barco D, Cibrian VeraD, Savigne W, López-Saura P, Guillén NietoG, et al. The pro-infl ammatory environment inrecalcitrant diabetic foot wounds. Int Wound J.2008 Oct;5(4):530–9.
Geerlings SE, Hoepelman AI. Immunedysfunction in patients with diabetes mellitus(DM). FEMS Immunol Med Microbiol. 1999Dec;26(3–4):259–65.
Graves DT, Kayal RA. Diabetic complicationsand dysregulated innate immunity. Front Biosci.2008 Jan;13:1227–39.
Kawahito S, Kitahata H, Oshita S. Problemsassociated with glucose toxicity: role ofhyperglycemia-induced oxidative stress. World JGastroenterol. 2009 Sep 7;15(33):4137–42.
Berlanga-Acosta J, Vázquez-Blomquist D,Cibrián D, Mendoza Y, Ochagavía ME, MirandaJ, et al. Growth Hormone Releasing Peptide6 (GHRP6) reduces liver fi brosis in CCl4chronically intoxicated rats. Biotecnol Aplic.2012;29(2):60–72.
Berlanga-Acosta J, Mendoza-Marí Y, Fernández-Mayola M, García-Ojalvo A, Valdés- Pérez C,Savigne-Gutiérrez W. Torpid diabetic woundhealing: evidence on the role of epigeneticforces. Int J Diabetes Clin Res. 2015;2(1).
Edmonds M, Manu C, Vas P. The current burdenof diabetic foot disease. J Clin Orthop Trauma.2021 Feb 8;17:88–93.
Pastar I, Ojeh N, Glinos GD, Stojadinovic O,Tomic-Canic M. Physiology and pathophysiologyof wound healing in diabetes, editors. In: TheDiabetic Foot. Contemporary Diabetes. Berlin:Springer; 2018 Sep. p. 109–30.
Rehman K, Akash MS. Mechanisms ofinfl ammatory responses and development ofinsulin resistance: how are they interlinked? JBiomed Sci. 2016 Dec 3;23(1):87.
Chen L, Chen R, Wang H, Liang F. Mechanismslinking infl ammation to insulin resistance. Int JEndocrinol. 2015;2015:508409.
Solis-Herruzo JA, Brenner DA, Chojkier M.Tumor necrosis factor alpha inhibits collagengene transcription and collagen synthesis incultured human fi broblasts. J Biol Chem. 1988Apr 25;263(12):5841–5.
Unemori E, Hibbs MS, Amento EP. Constitutiveexpression of a 92-kD gelatinase (type Vcollagenase) by rheumatoid synovial fi broblastsand its induction in normal human fi broblastsby infl ammatory cytokines. J Clin Invest. 1991Nov;88(5):1656–62.
Turina M, Miller FN, Tucker C, Polk HC Jr.Eff ects of hyperglycemia, hyperinsulinemia, andhyperosmolarity on neutrophil apoptosis. SurgInfect (Larchmt). 2006 Apr;7(2):111– 21.
McCarty SM, Percival SL. Proteases anddelayed wound healing. Adv Wound Care (NewRochelle). 2013 Oct;2(8):438–47.
Lobmann R, Schultz G, Lehnert H. Proteasesand the diabetic foot syndrome: mechanismsand therapeutic implications. Diabetes Care.2005 Feb;28(2):461–71.
Braund R, Hook S, Medlicott NJ. The role oftopical growth factors in chronic wounds. CurrDrug Deliv. 2007 Jul;4(3):195–204.
Schönfelder U, Abel M, Wiegand C, KlemmD, Elsner P, Hipler U-C. Infl uence of selectedwound dressings on PMN elastase in chronicwound fl uid and their antioxidative potential invitro. Biomaterials. 2005 Nov;26(33):6664–73.
Dinh T, Pham H. Emerging treatments in diabeticwound care. Wounds. 2002 Jan;14(1):2–10.
Wang L, Zhou X, Yin Y, Mai Y, Zhang X, Wang D.Hyperglycemia induces neutrophil extracellulartraps formation through an NADPH oxidasedependentpathway in diabetic retinopathy.Front Immunol. 2019 Jan 8;9:3076.
Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y,Yu S, Miller RG, et al. Hyperglycemia promotesmyelopoiesis and impairs the resolutionof atherosclerosis. Cell Metab. 2013 May7;17(5):695–708.
Krzyszczyk P, Schloss R, Palmer A, BerthiaumeF. The role of macrophages in acute and chronicwound healing and interventions to promote prowoundhealing phenotypes. Front Physiol. 2018May 1;9:419.
Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, Gómez-Arauz AY, Dueñas- Andrade Y,Hernández-Ruiz J, et al. Human monocytes andmacrophages undergo M1- type infl ammatorypolarization in response to high levels of glucose.Immunol Lett. 2016 Aug;176:81–9.
Khanna S, Biswas S, Shang Y, Collard E, AzadA, Kauh C, et al. Macrophage dysfunctionimpairs resolution of infl ammation in thewounds of diabetic mice. PLoS One. 2010 Mar4;5(3):e9539.
Moganti K, Li F, Schmuttermaier C, RiemannS, Klüter H, Gratchev A, et al. Hyperglycemiainduces mixed M1/M2 cytokine profi le in primaryhuman monocyte- derived macrophages.Immunobiology. 2017 Oct;222(10):952–9.
Wicks K, Torbica T, Mace KA. Myeloid celldysfunction and the pathogenesis of thediabetic chronic wound. Semin Immunol. 2014Aug;26(4):341–53.
Armstrong DG, Gurtner GC. A histologicallyhostile environment made more hospitable? NatRev Endocrinol. 2018 Sep;14(9):511–2.
Rowe DW, Starman BJ, Fujimoto WY, WilliamsRH. Abnormalities in proliferation and proteinsynthesis in skin fi broblast cultures frompatients with diabetes mellitus. Diabetes. 1977Apr;26(4):284–90.
Armstrong DG, Boulton AJM, Bus SA. Diabeticfoot ulcers and their recurrence. New Engl JMed. 2017 Jun 15;376(24):2367–75.
Stratton IM, Adler AI, Neil HA, Matthews DR,Manley SE, Cull CA, et al. Association ofglycaemia with macrovascular and microvascularcomplications of type 2 diabetes (UKPDS 35):prospective observational study. BMJ. 2000Aug;321(7258):405–12.
Blazer S, Khankin E, Segev Y, Ofi r R, Yalon-Hacohen M, Kra-Oz Z, et al. High glucoseinducedreplicative senescence: point of noreturn and eff ect of telomerase. Biochem BiophysRes Commun. 2002 Aug 9;296(1):93–101.
Blair M. Diabetes Mellitus Review. Urol Nurs.2016 Jan–Feb;36(1):27–36.
Berlanga-Acosta JA, Guillén-Nieto GE,Rodríguez-Rodríguez N, Mendoza-Mari Y,Bringas-Vega ML, Berlanga-Sáez JO, et al.Cellular senescence as the pathogenic hub ofdiabetes-related wound chronicity pathways.Front Endocrinol (Lausanne). 2020 Sep16;11:573032.
Zubair M, Ahmad J. Role of growth factorsand cytokines in diabetic foot ulcer healing: adetailed review. Rev Endocrine Metab Disord.2019 Jun;20(2):207–17.
Berlanga-Acosta J, Valdéz-Pérez C, Savigne-Gutiérrez W, Mendoza-Marí Y, Franco- Pérez N,Vargas-Machiran E, et al. Cellular and molecularinsights into the wound healing mechanism indiabetes. Biotecnol Apl. 2010 Oct;27(4):255–61.
Vlassara H, Uribarri J. Advanced glycation endproducts (AGE) and diabetes: cause, eff ect, orboth? Curr Diab Rep. 2014 Jan;14(1):453.
Singh VP, Bali A, Singh N, Jaggi AS.Advanced glycation end products and diabeticcomplications. Korean J Physiol Pharmacol.2014 Feb;18(1):1–14.
Wang Z, Shi C. Cellular senescence isa promising target for chronic wounds: acomprehensive review. Burns Trauma. 2020 Jun23;8:tkaa021.
Wilkinson HN, Hardman MJ. Wound healing:cellular mechanisms and pathological outcomes.Open Biol. 2020 Sep;10(9):200223.
Berlanga-Acosta J, López-Mola E, Garcia-SiverioM, Guillén-Nieto G, López-Saura P, Valdez-Pérez C, et al. Detrimental impact of acuteand chronic glucose burden in wound- healingcells: fi broblasts, myofi broblasts and vascularprecursor cells. Biotecnol Aplic. 2012;29(4):208–17.
Morasso MI, Tomic-Canic M. Epidermal stemcells: the cradle of epidermal determination,diff erentiation and wound healing. Biol Cell. 2005Mar;97(3):173– 83.
Terashi H, Izumi K, Deveci M, Rhodes LM,Marcelo CL. High glucose inhibits humanepidermal keratinocyte proliferation for cellularstudies on diabetes mellitus. Int Wound J. 2005Dec;2(4):298–304.
Lan CCE, Liu I-H, Fang A-H, Wen C-H, Wu C-S.Hyperglycaemic conditions decrease culturedkeratinocyte mobility: implications for impairedwound healing in patients with diabetes. Br JDermatol. 2008 Nov;159(5):1103–15.
Abu-Ashour W, Twells LK, Valcour JE, GambleJ-M. Diabetes and the occurrence of infectionin primary care: a matched cohort study. BMCInfect Dis. 2018;18(1):1–8.
Bertoni AG, Saydah S, Brancati FL. Diabetes andthe risk of infection-related mortality in the US.Diabetes Care. 2001 Jun;24(6):1044–9.
Tsai S, Clemente-Casares X, Revelo XS,Winer S, Winer DA. Are obesity-related insulinresistance and type 2 diabetes autoimmunediseases? Diabetes. 2015 Jun;64(6):1886–97.
Tsalamandris S, Antonopoulos AS, OikonomouE, Papamikroulis G-A, Vogiatzi G, PapaioannouS, et al. The role of infl ammation in diabetes:current concepts and future perspectives. EurCardiol Rev. 2019 Apr;14(1):50–9.
Wellen KE, Hotamisligil GS. Infl ammation,stress, and diabetes. J Clin Invest. 2005May;115(5):1111–9.
Oguntibeju OO. Type 2 diabetes mellitus, oxidativestress and infl ammation: examining thelinks. International journal of physiology, pathophysiologyand pharmacology. 2019;11(3):45.
Donath MY, Shoelson SE. Type 2 diabetes as aninfl ammatory disease. Nat Rev Immunol. 2011Feb;11(2):98–107.
Nielsen TB, Pantapalangkoor P, Yan J, Luna BM,Dekitani K, Bruhn K, et al. Diabetes exacerbatesinfection via hyperinfl ammation by signalingthrough TLR4 and RAGE. mBio. 2017 Aug22;8(4):e00818-17.
Rayfi eld EJ, Ault MJ, Keusch GT, Brothers MJ,Nechemias C, Smith H. Infection and diabetes:the case for glucose control. Am J Med. 1982Mar;72(3):439–50.
Knapp S. Diabetes and infection: is there a link?--A mini-review. Gerontology. 2013;59(2):99–104.
Kraine MR, Tisch RM. The role of environmentalfactors in insulin-dependent diabetes mellitus:an unresolved issue. Environ Health Perspect.1999 Oct;107 Suppl 5 (Suppl 5):777–81.
Association AD. Standards of medical care indiabetes—2013. Diabetes Care. 2013;36(Suppl1):S11–S66.
Rubinstein R, Genaro AM, Motta A, CremaschiG, Wald MR. Impaired immune responses instreptozotocin-induced type I diabetes in mice.Involvement of high glucose. Clin Exp Immunol.2008 Nov;154(2):235–46.
Sohlang MN, Majaw S. Altered VDAC-HKassociation and apoptosis in mouse peripheralblood lymphocytes exposed to diabetic condition:an in vitro and in vivo study. Arch PhysiolBiochem. 2021 Jan 12:1–11.
Arya AK, Tripathi R, Kumar S, Tripathi K. Recentadvances on the association of apoptosis inchronic non healing diabetic wound. World JDiabetes. 2014 Dec 15;5(6):756–62.
Stafeev IS, Vorotnikov AV, Ratner EI, MenshikovMY, Parfyonova YV. Latent infl ammationand insulin resistance in adipose tissue. Int JEndocrinol. 2017;2017:5076732.
Boucher J, Kleinridders A, Kahn CR. Insulinreceptor signaling in normal and insulin- resistantstates. Cold Spring Harb Perspect Biol. 2014 Jan1;6(1):a009191.
Das AK, Kalra S, Tiwaskar M, Bajaj S, SeshadriK, Chowdhury S, et al. Expert group consensusopinion: Role of anti-infl ammatory agents in themanagement of Type-2 diabetes (T2D). J AssocPhysicians India. 2019 Dec;67(12):65–74.
Nwadiugwu MC. Infl ammatory activities in type2 diabetes patients with co-morbid angiopathiesand exploring benefi cial interventions: asystematic review. Front Public Health. 2021Jan 25;8:600427.
Ohno Y, Aoki N, Nishimura A. In vitro productionof interleukin-1, interleukin-6, and tumornecrosis factor-alpha in insulin-dependentdiabetes mellitus. J Clin Endocrinol Metab. 1993Oct;77(4):1072–7.
Mooradian AD, Reed RL, Meredith KE, ScuderiP. Serum levels of tumor necrosis factor andIL-1α and IL-1β in diabetic patients. DiabetesCare. 1991 Jan;14(1):63–5.
Reinhold D, Ansorge S, Schleicher ED. Elevatedglucose levels stimulate transforming growthfactor-β1 (TGF-β1), suppress interleukin IL-2,IL-6 and IL-10 production and DNA synthesis inperipheral blood mononuclear cells. Horm MetabRes. 1996 Jun;28(6):267–70.
Spindler MP, Ho AM, Tridgell D, McCulloch-OlsonM, Gersuk V, Ni C, et al. Acute hyperglycemiaimpairs IL-6 expression in humans. ImmunInfl amm Dis. 2016;4(1):91–7.
Akbari M, Hassan-Zadeh V. Hyperglycemiaaff ects the expression of infl ammatory genes inperipheral blood mononuclear cells of patientswith Type 2 diabetes. Immunol Invest. 2018Oct;47(7):654–65.
Glund S, Deshmukh A, Long YC, Moller T,Koistinen HA, Caidahl K, et al. Interleukin-6 directly increases glucose metabolism inresting human skeletal muscle. Diabetes. 2007Jun;56(6):1630–7.
Wu R, Liu X, Yin J, Wu H, Cai X, Wang N, etal. IL-6 receptor blockade ameliorates diabeticnephropathy via inhibiting infl ammasome inmice. Metabolism. 2018 Jun;83:18–24.
Feigerlová E, Battaglia-Hsu S-F. IL-6 signalingin diabetic nephropathy: from pathophysiologyto therapeutic perspectives. Cytokine GrowthFactor Rev. 2017 Oct;37:57–65.
Mesquida M, Drawnel F, Fauser S. The role ofinfl ammation in diabetic eye disease. SeminImmunopathol. 2019 Jul;41(4):427–45.
Guest CB, Park MJ, Johnson DR, Freund GG.The implication of proinfl ammatory cytokinesin type 2 diabetes. Front Biosci. 2008 May1;13:5187–94.
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R.Type 2 diabetes and its impact on the immunesystem. Curr Diabetes Rev. 2020;16(5):442–9.
Spranger J, Kroke A, Möhlig M, Hoff mann K,Bergmann MM, Ristow M, et al. Infl ammatorycytokines and the risk to develop type 2 diabetes:results of the prospective population-basedEuropean Prospective Investigation into Cancerand Nutrition [EPIC]- Potsdam Study. Diabetes.2003 Mar;52(3):812–7.
Javeed N, Brown MR, Rakshit K, Her T, Ye Z,Lee JH, et al. Pro-infl ammatory cytokines disruptβ-cell circadian clocks in diabetes. bioRxiv[Internet]. Yale: BMJ Yale; 2019 Aug 15 [cited2021 Jan 5]. Available at: https://www.biorxiv.org/content/10.1101/705210v2.full.pdf
Randeria SN, Thomson GJ, Nell TA, RobertsT, Pretorius E. Infl ammatory cytokines intype 2 diabetes mellitus as facilitators ofhypercoagulation and abnormal clot formation.Cardiovasc Diabetol. 2019;18(1):1–15.
Acharya AB, Thakur S, Muddapur MV, KulkarniRD. Systemic cytokines in type 2 diabetesmellitus and chronic periodontitis. Curr DiabetesRev. 2018;14(2):182–8.
El-Osta A, Brasacchio D, Yao D, Pocai A, JonesPL, Roeder RG, et al. Transient high glucosecauses persistent epigenetic changes andaltered gene expression during subsequentnormoglycemia. J Exp Med. 2008 Sep29;205(10):2409–17.
Berlanga-Acosta J, Fernández-Mayola M,Mendoza-Marí Y, García-Ojalvo A, Playford RJ,Guillén-Nieto G. Intralesional infi ltrations of cellfreefi ltrates derived from human diabetic tissuesdelay the healing process and recreate diabeteshistopathological changes in healthy rats. FrontClin Diabetes Health. 2021 Mar;2:617741. DOI:103389/fcdhc.2021.617741
Keating ST, El-Osta A. Glycemic memories and theepigenetic component of diabetic nephropathy.Curr Diab Rep. 2013 Aug;13(4):574–81.
Miao F, Chen Z, Genuth S, Paterson A,Zhang L, Wu X, et al. Evaluating the role ofepigenetic histone modifi cations in the metabolicmemory of type 1 diabetes. Diabetes. 2014May;63(5):1748–62.
Akbari M, Hassan-Zadeh V. The infl ammatoryeff ect of epigenetic factors and modifi cations intype 2 diabetes. Infl ammopharmacology. 2020Apr;28(2):345–62.
Hu R, Xia C-Q, Butfi loski E, Clare-Salzler M.Eff ect of high glucose on cytokine production byhuman peripheral blood immune cells and type Iinterferon signaling in monocytes: Implicationsfor the role of hyperglycemia in the diabetesinfl ammatory process and host defense againstinfection. Clin Immunol. 2018 Oct;195:139–48.
Kumar M, Roe K, Nerurkar PV, Orillo B,Thompson KS, Verma S, et al. Reduced immunecell infi ltration and increased pro-infl ammatorymediators in the brain of Type 2 diabeticmouse model infected with West Nile virus. JNeuroinfl ammation. 2014 Apr 21;11:80. DOI:10.1186/1742-2094-11-80.
Martínez N, Ketheesan N, Martens GW,West K, Lien E, Kornfeld H. Defects in earlycell recruitment contribute to the increasedsusceptibility to respiratory Klebsiellapneumoniae infection in diabetic mice. MicrobesInfect. 2016 Oct;18(10):649–55.
Nguyen KT, Seth AK, Hong SJ, Geringer MR, XieP, Leung KP, et al. Defi cient cytokine expressionand neutrophil oxidative burst contribute toimpaired cutaneous wound healing in diabetic,biofi lm-containing chronic wounds. WoundRepair Regen. 2013 Nov– Dec;21(6):833–41.
Dasu MR, Devaraj S, Zhao L, Hwang DH,Jialal I. High glucose induces toll-like receptorexpression in human monocytes: mechanism ofactivation. Diabetes. 2008 Nov;57(11):3090–8.
Chao W-C, Yen C-L, Wu Y-H, Chen S-Y, HsiehC-Y, Chang T-C, et al. Increased resistin maysuppress reactive oxygen species productionand infl ammasome activation in type 2 diabeticpatients with pulmonary tuberculosis infection.Microbes Infect. 2015 Mar;17(3):195–204.
Perner A, Nielsen SE, Rask-Madsen J. Highglucose impairs superoxide production fromisolated blood neutrophils. Intensive Care Med.2003 Apr;29(4):642–5.
Ohsawa I, Ishikawa M, Takahashi K, WatanabeM, Nishimaki K, Yamagata K, et al. Hydrogenacts as a therapeutic antioxidant by selectivelyreducing cytotoxic oxygen r adicals. Nat Med.2007 Jun;13(6):688–94.
Osar Z, Samanci T, Demirel GY, Damci T, IlkovaH. Nicotinamide eff ects oxidative burst activity ofneutrophils in patients with poorly controlled type2 diabetes mellitus. Exp Diabesity Res. 2004Apr–Jun;5(2):155–62.
Fakhruddin S, Alanazi W, Jackson KE. Diabetesinducedreactive oxygen species: mechanismof their generation and role in renal injury. JDiabetes Res. 2017;2017:8379327.
Sousa A, Lucas M, Ribeiro D, Correia CM, SilvaVLM, Silva AMS, et al. Chalcones as modulatorsof neutrophil oxidative burst under physiologicaland high glucose conditions. J Nat Prod. 2020Oct 23;83(10):3131–40.
Yuan T, Yang T, Chen H, Fu D, Hu Y, WangJ, et al. New insights into oxidative stressand infl ammation during diabetes mellitusacceleratedatherosclerosis. Redox Biol. 2019Jan;20:247–60.
Stegenga ME, van der Crabben SN, BlümerRM, Levi M, Meijers JCM, Serlie MJ, et al.Hyperglycemia enhances coagulation andreduces neutrophil degranulation, whereashyperinsulinemia inhibits fi brinolysis duringhuman endotoxemia. Blood. 2008 Jul1;112(1):82–9.
Hair PS, Echague CG, Rohn RD, Krishna NK,Nyalwidhe JO, Cunnion KM. Hyperglycemicconditions inhibit C3-mediated immunologiccontrol of Staphylococcus aureus. J Transl Med.2012 Mar 5;10:35.
Jafar N, Edriss H, Nugent K. The eff ect of shorttermhyperglycemia on the innate immunesystem. Am J Med Sci. 2016 Feb;351(2):201–11.
Joshi MB, Lad A, Prasad ASB, Balakrishnan A,Ramachandra L, Satyamoorthy K, et al. Highglucose modulates IL-6 mediated immunehomeostasis through impeding neutrophilextracellular trap formation. FEBS Lett. 2013 Jul11;587(14):2241–6.
Pavlou S, Lindsay J, Ingram R, Xu H, Chen M.Sustained high glucose exposure sensitizesmacrophage responses to cytokine stimuli butreduces their phagocytic activity. BMC Immunol.2018 Jul 11;19(1):24.
Liu H-F, Zhang H-J, Hu Q-X, Liu X-Y, Wang Z-Q,Fan J-Y, et al. Altered polarization, morphology,and impaired innate immunity germane toresident peritoneal macrophages in mice withlong-term type 2 diabetes. J Biomed Biotechnol.2012;2012:867023.
Ahmed M, de Winther MPJ, Van den BosscheJ. Epigenetic mechanisms of macrophageactivation in type 2 diabetes. Immunobiology.2017 Oct;222(10):937–43.
Jin X, Yao T, Zhou Ze, Zhu J, Zhang S, Hu W,et al. Advanced glycation end products enhancemacrophages polarization into M1 phenotypethrough activating RAGE/NF-κB pathway.Biomed Res Int. 2015;2015:732450.
Orliaguet L, Dalmas E, Drareni K, VenteclefN, Alzaid F. Mechanisms of macrophagepolarization in insulin signaling and sensitivity.Front Endocrinol (Lausanne). 2020 Feb19;11:62.
Okizaki S-i, Ito Y, Hosono K, Oba K, OhkuboH, Amano H, et al. Suppressed recruitment ofalternatively activated macrophages reducesTGF-β1 and impairs wound healing instreptozotocin-induced diabetic mice. BiomedPharmacother. 2015 Mar;70:317–25.
Mauriello CT, Hair PS, Rohn RD, Rister NS,Krishna NK, Cunnion KM. Hyperglycemiainhibits complement-mediated immunologicalcontrol of S. aureus in a rat model of peritonitis.J Diabetes Res. 2014;2014:762051.
Yano H, Kinoshita M, Fujino K, Nakashima M,Yamamoto Y, Miyazaki H, et al. Insulin treatmentdirectly restores neutrophil phagocytosis andbactericidal activity in diabetic mice and therebyimproves surgical site Staphylococcus aureusinfection. Infect Immun. 2012 Dec;80(12):4409–16.
Otton R, Soriano FG, Verlengia R, Curi R.Diabetes induces apoptosis in lymphocytes. JEndocrinol. 2004 Jul;182(1):145–56.
Gleeson LE, Sheedy FJ. Metabolicreprogramming & infl ammation: fuelling the hostresponse to pathogens. Semin Immunol. 2016Oct;28(5):450–68.
Stentz FB, Kitabchi AE. Activated T lymphocytesin type 2 diabetes: implications from in vitrostudies. Curr Drug Targets. 2003 Aug;4(6):493–503.
van Niekerk G, Christowitz C, Conradie D,Engelbrecht A-M. Insulin as an immunomodulatoryhormone. Cytokine Growth Factor Rev. 2020Apr;52:34–44.
van Niekerk G, Dalgleish AG, Joubert F, JoubertA, Engelbrecht A-M. The immuno- oncologicalimplications of insulin. Life Sci. 2020 Jan1;264:118716.
Kaur P, Choudhury D. Insulin promotes woundhealing by inactivating NFkβP50/P65 andactivating protein and lipid biosynthesis andalternating pro/anti-infl ammatory cytokinesdynamics. Biomol Concepts. 2019 Feb22;10(1):11–24.
Zhu L, Fan L, Zhu Y, Wang Y, Bai H, YangQ, et al. Insulin antagonizes LPS-inducedinfl ammatory responses by activating SR-A1/ERK axis in macrophages. Infl ammation. 2019Apr;42(2):754–62.
Chauhan P, Saha B. Metabolic regulation ofinfection and infl ammation. Cytokine. 2018Dec;112:1–11.
Ferracini M, Martins JO, Campos MRM, AngerDBC, Jancar S. Impaired phagocytosis byalveolar macrophages from diabetic rats isrelated to the defi cient coupling of LTs to theFcγR signaling cascade. Mol Immunol. 2010Jul;47(11–12):1974–80.
Tessaro FHG, Ayala TS, Nolasco EL, BellaLM, Martins JO. Insulin infl uences LPSinducedTNF-α and IL-6 release throughdistinct pathways in mouse macrophages fromdiff erent compartments. Cell Physiol Biochem.2017;42(5):2093–104.
D’alessandra Y, Chiesa M, Vigorelli V, Ricci V,Rurali E, Raucci A, et al. Diabetes induces atranscriptional signature in bone marrow–derivedCD34+ hematopoietic stem cells predictive oftheir progeny dysfunction. Int J Mol Sci. 2021 Jan31;22(3):1423.
Senneville É, Lipsky BA, Abbas ZG, Aragón-Sánchez J, Diggle M, Embil JM, et al. Diagnosisof infection in the foot in diabetes: a systematicreview. Diabetes Metab Res Rev. 2020 Mar;36Suppl 1:e3281.
Yazdanpanah L, Shahbazian H, Nazari I, ArtiHR, Ahmadi F, Mohammadianinejad SE, etal. Incidence and risk factors of diabetic footulcer: a population-based diabetic foot cohort(ADFC study)—two-year follow-up study. Int JEndocrinol. 2018 Mar 15;2018:7631659.
Richard J-L, Sotto A, Lavigne J-P. New insightsin diabetic foot infection. World J Diabetes. 2011Feb 15;2(2):24–32.
Jneid J, Cassir N, Schuldiner S, Jourdan N, SottoA, Lavigne J-P, et al. Exploring the microbiotaof diabetic foot infections with culturomics. FrontCell Infect Microbiol. 2018 Aug 14;8:282.
Lavery LA, Armstrong DG, Murdoch DP, PetersEJG, Lipsky BA. Validation of the InfectiousDiseases Society of America’s diabetic footinfection classifi cation system. Clin Infect Dis.2007 Feb 15;44(4):562–5.
Casadevall A, Pirofski L-a. The damageresponseframework of microbial pathogenesis.Nat Rev Microbiol. 2003 Oct;1(1):17–24.
Spichler B, Armstrong HD, Lipsky BA.Microbiology of diabetic foot infections: fromLouis Pasteur to ‘crime scene investigation’.BMC Medicine. 2015 Jan 7;13(2).
Dow G, Browne A, Sibbald RG. Infection inchronic wounds: controversies in diagnosisand treatment. Ostomy Wound Manage. 1999Aug;45(8):23–7, 29–40.
Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, MadsenKG, Phipps R, Krogfelt K, et al. Why chronicwounds will not heal: a novel hypothesis. WoundRepair Regen. 2008 Jan–Feb;16(1):2–10.
Edmonds M. Infection in the neuroischemic foot.Int J Lower Extrem Wounds. 2005 Sep;4(3):145–53.
Armstrong DG, Lavery LA, Sariaya M, AshryH. Leukocytosis is a poor indicator of acuteosteomyelitis of the foot in diabetes mellitus. JFoot Ankle Surg. 1996;35(4):280–3.
Gardner SE, Hillis SL, Frantz RA. Clinical signs ofinfection in diabetic foot ulcers with high microbialload. Biol Res Nurs. 2009 Oct;11(2):119–28.
Ruke M, Savai J. Diabetic foot infection, biofi lmnew management strategy. Diabetes Res OpenAccess. 2019 Nov 11;1(1):7–22.
Bader MS. Diabetic foot infection. Am FamPhysician. 2008;78(1):71–9.
Ogba OM, Nsan E, Eyam ES. Aerobic bacteriaassociated with diabetic foot ulcers and theirsusceptibility pattern. Biomed Dermatol. 2019Feb 1;3(1):1–6.
Jacquet R, LaBauve AE, Akoolo L, Patel S,Alqarzaee AA, Lung TWF, et al. Dual geneexpression analysis identifi es factors associatedwith Staphylococcus aureus virulence in diabeticmice. Infect Immun. 2019 Apr 23;87(5):00163–19.
Abdulrazak A, Bitar ZI, Al-Shamali AA, MobasherLA. Bacteriological study of diabetic footinfections. J Diabetes Complications. 2005 May–Jun;19(3):138–41.
Lipsky BA, Berendt AR, Deery HG, Embil JM,Joseph WS, Karchmer AW, et al. Diagnosis andtreatment of diabetic foot infections. Clin InfectDis. 2004 Oct 1;39(7):885–910.
Richard JL, Lavigne JP, Sotto A. Diabetes andfoot infection: more than double trouble. DiabetesMetab Res Rev. 2012 Feb;28 Suppl 1:46–53.
Spichler A, Hurwitz BL, Armstrong DG, LipskyBA. Microbiology of diabetic foot infections: fromLouis Pasteur to ‘crime scene investigation’.BMC Med. 2015 Jan 7;13:2.
Rani V, Nithyalakshmi J. A comparative study ofDiabetic and Non-diabetic wound infections withspecial reference to MRSA and ESBL. Int J CurrMicrobiol App Sci. 2014;3(12):546–54.
Banu A, Hassan MMN, Rajkumar J, Srinivasa S.Spectrum of bacteria associated with diabeticfoot ulcer and biofi lm formation: a prospectivestudy. Australas Med J. 2015 Sep 30;8(9):280–5.
Mossabba Ms, Khan DM. Prevalence ofdiabetic foot ulcer infections associated withGram negative bacteria with special referenceto drug resistant isolates. Int J Biomed Res.2016;7(11):765–70.
Ishwarya KM, Neelusree P. Bacteriologicalprofi le and their antimicrobial susceptibility fromdiabetic foot infections in a tertiary care centrefrom Kancheepuram, India. Saudi J PatholMicrobiol. 2019 Feb 28;4(2):134–41.
Oates A, Bowling FL, Boulton AJM, McBain AJ.Molecular and culture-based assessment of themicrobial diversity of diabetic chronic foot woundsand contralateral skin sites. J Clin Microbiol.2012 Jul;50(7):2263–71.
Lipsky BA, Armstrong DG, Citron DM, Tice AD,Morgenstern DE, Abramson MA. Ertapenemversus piperacillin/tazobactam for diabetic footinfections (SIDESTEP): prospective, randomised,controlled, double-blinded, multicentre trial.Lancet. 2005 Nov 12;366(9498):1695–703.
Scott G. The diabetic foot examination: a positivestep in the prevention of diabetic foot ulcers andamputation. Osteopathic Fam Physician. 2013Mar–Apr;5(2):73–8.
Nicolau DP, Stein GE. Therapeutic optionsfor diabetic foot infections: a review with anemphasis on tissue penetration characteristics.J Am Podiatric Med Assoc. 2010 Jan–Feb;100(1):52–63.
Berlanga-Acosta J, Fernández-Montequín J,Valdés-Pérez C, Savigne-Gutiérrez W, Mendoza-Marí Y, García-Ojalvo A, et al. Diabetic foot ulcersand epidermal growth factor: revisiting the localdelivery route for a successful outcome. BiomedRes Int. 2017;2017:2923759.
Lavery LA, Bhavan K, Wukich DK. Biofi lm anddiabetic foot ulcer healing: all hat and no cattle.Ann Transl Med. 2019 Apr;7(7):159.
Vestby LK, Grønseth T, Simm R, Nesse LL.Bacterial biofi lm and its role in the pathogenesisof disease. Antibiotics (Basel). 2020 Feb3;9(2):59.
Clinton A, Carter T. Chronic wound biofi lms:pathogenesis and potential therapies. Lab Med.2015 Fall;46(4):277–84.
Hurlow J, Bowler PG. Clinical experience withwound biofi lm and management: a case series.Ostomy Wound Manage. 2009 Apr;55(4):38–49.
Kirketerp-Møller K, Jensen PØ, Fazli M, MadsenKG, Pedersen J, Moser C, et al. Distribution,organization, and ecology of bacteria in chronicwounds. J Clin Microbiol. 2008 Aug;46(8):2717–22.
James GA, Swogger E, Wolcott R, Pulcini Ed,Secor P, Sestrich J, et al. Biofi lms in chronicwounds. Wound Repair Regen. 2008 Jan –Feb;16(1):37–44.
Nwomeh BC, Yager DR, Cohen IK. Physiologyof the chronic wound. Clin Plastic Surg. 1998Jul;25(3):341–56.
Attinger C, Wolcott R. Clinically addressing biofi lmin chronic wounds. Adv Wound Care (NewRochelle). 2012 Jun;1(3):127–32.
Stewart PS, Costerton JW. Antibiotic resistanceof bacteria in biofi lms. Lancet. 2001 Jul14;358(9276):135–8.
Percival SL, Walker JT, Hunter PR. Microbiologicalaspects of biofi lms and drinking water. Florida:CRC Press; 2000 Jun 30. 240 p.
Schuster M, Lostroh CP, Ogi T, Greenberg EP.Identifi cation, timing, and signal specifi city ofPseudomonas aeruginosa quorum-controlledgenes: a transcriptome analysis. J Bacteriol. 2003Apr;185(7):2066–79.
Donlan RM, Costerton JW. Biofi lms: survivalmechanisms of clinically relevant microorganisms.Clin Microbiol Rev. 2002 Apr;15(2):167–93.
O’Toole G, Kaplan HB, Kolter R. Biofi lm formationas microbial development. Ann Rev Microbiol.2000;54:49–79.
Bowen G, Richardson N. Biofi lm management inchronic wounds and diabetic foot ulcers. DiabeticFoot J. 2016;19(4):198–204.
Percival SL, McCarty SM, Lipsky B. Biofi lms andwounds: an overview of the evidence. Adv WoundCare. 2015 Jul 1;4(7):373–81.
Metcalf DG, Bowler PG. Biofi lm delays woundhealing: a review of the evidence. Burns Trauma.2013 Jun 18;1(1):5–12.
Trøstrup H, Thomsen K, Christophersen LJ,Hougen HP, Bjarnsholt T, Jensen PØ, et al. Pseudomonas aeruginosa biofi lm aggravates skininfl ammatory response in BALB/c mice in a novelchronic wound model. Wound Repair Regen.2013 Mar–Apr;21(2):292– 9.
Suleman L. Extracellular bacterial proteases inchronic wounds: a potential therapeutic target?Adv Wound Care. 2016 Oct 1;5(10):455–63.
Prasad ASB, Shruptha P, Prabhu V, Srujan C,Nayak UY, Anuradha CKR, et al. Pseudomonasaeruginosa virulence proteins pseudolysin andprotease IV impede cutaneous wound healing.Lab Invest. 2020 Dec;100(12):1532–50.
Berne C, Ducret A, Hardy GG, Brun YV. Adhesinsinvolved in attachment to abiotic surfaces byGram-negative bacteria. Microbial Spectr. 2015Aug;3(4):10.
Pietrocola G, Nobile G, Rindi S, Speziale P.Staphylococcus aureus manipulates innateimmunity through own and host-expressedproteases. Front Cell Infect Microbiol. 2017 May5;7:166.
Van Der Plas MJ, Bhongir RK, Kjellström S, SillerH, Kasetty G, Mörgelin M, et al. Pseudomonasaeruginosa elastase cleaves a C-terminalpeptide from human thrombin that inhibits hostinfl ammatory responses. Nat Commun. 2016 May16;7:11567.
Dössel J, Meyer-Hoff ert U, Schröder JM,Gerstel U. Pseudomonas aeruginosa-derivedrhamnolipids subvert the host innate immuneresponse through manipulation of the humanbeta-defensin-2 expression. Cell Microbiol. 2012Sep;14(9):1364–75.
Mishra M, Byrd MS, Sergeant S, Azad AK, ParsekMR, McPhail L, et al. Pseudomonas aeruginosaPsl polysaccharide reduces neutrophil phagocytosisand the oxidative response by limiting complement-mediated opsonization. Cell Microbiol. 2012Jan;14(1):95– 106.
Schiller NL, Joiner KA. Interaction of complementwith serum-sensitive and serum- resistant strainsof Pseudomonas aeruginosa. Infect Immun. 1986Dec;54(3):689–94.
Frykberg RG, Banks J. Challenges in thetreatment of chronic wounds. Adv Wound Care(New Rochelle). 2015 Sep 1;4(9):560–82.
Ochoa M, Rahimi R, Ziaie B. Flexible sensors forchronic wound management. IEEE Rev BiomedEng. 2014;7:73–86.
Schreml S, Szeimies RM, Prantl L, Karrer S,Landthaler M, Babilas P. Oxygen in acute andchronic wound healing. Br J Dermatol. 2010Aug;163(2):257–68.
Demidova-Rice TN, Hamblin MR, HermanIM. Acute and impaired wound healing:pathophysiology and current methods for drugdelivery, part 1: normal and chronic wounds:biology, causes, and approaches to care. AdvSkin Wound Care. 2012;25(7):304–14.
Moser C, Pedersen HT, Lerche CJ, Kolpen M,Line L, Thomsen K, et al. Biofi lms and hostresponse–helpful or harmful. APMIS. 2017Apr;125(4):320–38.
Percival SL, Cutting KF. Biofi lms: possiblestrategies for suppression in chronic wounds.Nurs Stand. 2009 Apr 15–21;23(32):64,66,68.
Costerton W, Veeh R, Shirtliff M, Pasmore M,Post C, Ehrlich G. The application of biofi lmscience to the study and control of chronicbacterial infections. J Clin Invest. 2003Nov;112(10):1466–77.
Percival SL, Bowler P. Biofi lms and theirpotential role in wound healing. Wounds. 2004Jul;16(7):234–40.