2021, Number 2
<< Back Next >>
Rev Nefrol Dial Traspl 2021; 41 (2)
Protective effect of naringin in rat model of renal ischemia reperfusion injury
Deger M, Akdogan N, Izol V, Mahir KH, Pazarc P, Atilla AI
Language: English
References: 25
Page: 113-118
PDF size: 323.34 Kb.
ABSTRACT
Objective: We aimed to research
that naringin whether protects from
renal ischemia/reperfusion induced
renal damage in rats.
Methods:
Twenty-four Wistar albino female
rats randomly were divided into
three groups: 1) control group, in
which the rats were only performed
right nephrectomy; 2) a second
group received right nephrectomy
and left kidney ischemia (1 h) and
reperfusion (24 h) group ischemia/
reperfusion (I/R); 3) a third group
received 50 mg/kg naringin orally
once a day for two weeks before
ischemia/reperfusion (I/R/N).
Expression of cyclooxygenase-2
(COX-2), cytosolic phospholipase
A2 (cPLA2), inducible nitric
oxide synthase (iNOS), caspase-3,
B-cell lymphoma-2 (Bcl-2), Bcl-2
associated x protein (Bax), serum
creatinine (Cr), tumor necrosis
factor α (TNF-α), interleukin 6
(IL-6) were measured by using
enzyme-linked immunosorbent
assay (ELISA).
Results: Naringintreated
rats that performed renal
ischemia/reperfusion demonstrated
significant decrease in Cr, IL-6
and TNF-α levels when compared
to the only renal ischemia/
reperfusion performed rats. While
renal ischemia/reperfusion caused
a decrease of bcl-2 (1.72 ± 0.20
pg/ml) levels, while an increase
of COX-2 (11882 ± 642 pg/ml),
cPLA2 (2448 ± 139 pg/ml), iNOS
(4331 ± 438 IU/ml), cleaved
caspase-3 (7.33 ± 0.76 ng/ml) and
Bax (2.33 ± 0.44 ng/ml) levels. The
treatment of naringin reversed these
kidney effects (7.47 ± 60.35 pg/ml;
9299 ± 327 pg/ml; 2001 ± 78 pg/ml;
3112 ± 220 IU/ml; 3.38 ± 0.54 ng/
ml; 2.33 ± 0.44 ng/ml, respectively)
(p
‹0.05).
Conclusion: This study
showed that naringin treatment
attenuated renal damage induced by
ischemia/reperfusion in rats.
REFERENCES
Nuransoy A, Beytur A, Polat A, Samdanci E,Sagir M, Parlakpinar H. Protective effect ofsitagliptin against renal ischemia reperfusioninjury in rats. Ren Fail. 2015;37(4):687-93. doi:10.3109/0886022X.2015.1010991.
Yamamoto S, Hagiwara S, Hidaka S, Shingu C,Goto K, Kashima K, et al. The antioxidant EPC-K1attenuates renal ischemia-reperfusion injury in arat model. Am J Nephrol. 2011;33(6):485-90. doi:10.1159/000327820.
Akçetin Z, Busch A, Kessler G, Heynemann H,Holtz J, Brömme HJ. Evidence for only a moderatelipid peroxidation during ischemia-reperfusion of ratkidney due to its high antioxidative capacity. Urol Res.1999;27(4):280-4. doi: 10.1007/s002400050124.
Paller MS. Acute renal failure: controversies, clinicaltrials, and future directions. Semin Nephrol. 1998Sep;18(5):482-9.
Reiter RJ, Guerrero JM, Garcia JJ, Acuña-CastroviejoD. Reactive oxygen intermediates, molecular damage,and aging. Relation to melatonin. Ann N Y Acad Sci.1998;854:410-24. doi: 10.1111/j.1749-6632.1998.tb09920.x.
Lindsay TF, Liauw S, Romaschin AD, Walker PM. Theeffect of ischemia/reperfusion on adenine nucleotidemetabolism and xanthine oxidase production in skeletalmuscle. J Vasc Surg. 1990;12(1):8-15. doi: 10.1067/mva.1990.19946.
Chamoun F, Burne M, O’Donnell M, Rabb H.Pathophysiologic role of selectins and their ligands inischemia reperfusion injury. Front Biosci. 2000;5:E103-9. doi: 10.2741/chamoun.
Cruz CM, Rinna A, Forman HJ, Ventura AL,Persechini PM, Ojcius DM. ATP activates a reactiveoxygen species-dependent oxidative stress response andsecretion of proinflammatory cytokines in macrophages.J Biol Chem. 2007;282(5):2871-9. doi: 10.1074/jbc.M608083200.
Beutler B. Neo-ligands for innate immune receptorsand the etiology of sterile inflammatory disease.Immunol Rev. 2007;220:113-28. doi: 10.1111/j.1600-065X.2007.00577.x.
Chatterjee PK, Patel NS, Sivarajah A, Kvale EO,Dugo L, Cuzzocrea S, et al. GW274150, a potentand highly selective inhibitor of iNOS, reducesexperimental renal ischemia/reperfusion injury.Kidney Int. 2003;63(3):853-65. doi: 10.1046/j.1523-1755.2003.00802.x.
Bharti S, Rani N, Krishnamurthy B, Arya DS.Preclinical evidence for the pharmacological actionsof naringin: a review. Planta Med. 2014;80(6):437-51.doi: 10.1055/s-0034-1368351.
Zeng L, Zhen Y, Chen Y, Zou L, Zhang Y, Hu F,et al. Naringin inhibits growth and induces apoptosisby a mechanism dependent on reduced activation ofNF‑κB/COX‑2‑caspase-1 pathway in HeLa cervicalcancer cells. Int J Oncol. 2014;45(5):1929-36. doi:10.3892/ijo.2014.2617.
Gutiérrez-Venegas G, Ventura-Arroyo JA, Arreguín-Cano JA, Ostoa-Pérez MF. Flavonoids inhibitiNOS production via mitogen activated proteinsin lipoteichoic acid stimulated cardiomyoblasts. IntImmunopharmacol. 2014;21(2):320-7. doi: 10.1016/j.intimp.2014.04.010.
Hamada T, Tsuchihashi S, Avanesyan A, DuarteS, Moore C, Busuttil RW, et al. Cyclooxygenase-2deficiency enhances Th2 immune responses andimpairs neutrophil recruitment in hepatic ischemia/reperfusion injury. J Immunol. 2008;180(3):1843-53.doi: 10.4049/jimmunol.180.3.1843.
Williams P, López H, Britt D, Chan C, Ezrin A,Hottendorf R. Characterization of renal ischemiareperfusioninjury in rats. J Pharmacol Toxicol Methods.1997;37(1):1-7. doi: 10.1016/s1056-8719(96)00141-4.
Carrier D, Bou Khalil M, Kealey A. Modulation ofphospholipase A2 activity by aminoglycosides anddaptomycin: a Fourier transform infrared spectroscopicstudy. Biochemistry. 1998;37(20):7589-97. doi:10.1021/bi971793d.
Hosaka EM, Santos OFP, Seguro AC, Vattimo MFF.Effect of cyclooxygenase inhibitors on gentamicininducednephrotoxicity in rats. Braz J Med BiolRes. 2004;37(7):979-85. doi: 10.1590/S0100-879X2004000700006.
Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC,Chang YC, et al. Lipoteichoic acid induces nuclearfactor-kappaB activation and nitric oxide synthaseexpression via phosphatidylinositol 3-kinase, Akt, andp38 MAPK in RAW 264.7 macrophages. Immunology.2005;115(3):366-74. doi: 10.1111/j.1365-2567.2005.02160.x.
Lien YH, Lai LW, Silva AL. Pathogenesis of renalischemia/reperfusion injury: lessons from knockoutmice. Life Sci. 2003;74(5):543-52. doi: 10.1016/j.lfs.2003.08.001.
Ceriello A, Falleti E, Motz E, Taboga C, TonuttiL, Ezsol Z, et al. Hyperglycemia-induced circulatingICAM-1 increase in diabetes mellitus: the possible roleof oxidative stress. Horm Metab Res. 1998;30(3):146-9.doi: 10.1055/s-2007-978854.
Chai YC, Ashraf SS, Rokutan K, Johnston RBJr, Thomas JA. S-thiolation of individual humanneutrophil proteins including actin by stimulation of therespiratory burst: evidence against a role for glutathionedisulfide. Arch Biochem Biophys. 1994;310(1):273-81.doi: 10.1006/abbi.1994.1167.
Kannan K, Jain SK. Oxidative stress and apoptosis.Pathophysiology. 2000;7(3):153-63. doi: 10.1016/s0928-4680(00)00053-5.
Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC,Ortega N, Perez-Mateos M, Muñiz P. Antioxidantproperties, radical scavenging activity and biomoleculeprotection capacity of flavonoid naringenin and itsglycoside naringin: a comparative study. J Sci FoodAgric. 2010;90(7):1238-44. doi: 10.1002/jsfa.3959.
Amini N, Sarkaki A, Dianat M, Mard SA, AhangarpourA, Badavi M. The renoprotective effects of naringinand trimetazidine on renal ischemia/reperfusioninjury in rats through inhibition of apoptosisand downregulation of micoRNA-10a. BiomedPharmacother. 2019;112:108568. doi: 10.1016/j.biopha.2019.01.029.
Singh D, Chopra K. The effect of naringin, abioflavonoid on ischemia-reperfusion induced renalinjury in rats. Pharmacol Res. 2004;50(2):187-93. doi:10.1016/j.phrs.2004.01.007.