2003, Number 2
<< Back Next >>
Gac Med Mex 2003; 139 (2)
What Clinicians Want to Know About Vaccines against Human Papilloma Virus.
Sanclemente G
Language: Spanish
References: 28
Page: 173-183
PDF size: 161.46 Kb.
ABSTRACT
Human papillomaviruses (HPVs) are epitheliotropic viruses that infect the basal layer of mucosal and keratinizing epithelia. HPV viral genome is made up of an early transcription region (E) and a late region composed of genes L1, L2, and a long control region (LCR).Despite the benign character of most lesions, HPV oncogenicity has been demonstrated in anal cancer, epidermodysplasia verruciformis, and cervical cancer. Nearly 12% of worldwide cancer incidence is due to HPV infection and HPV-16 is the most prevalent genotype found. Therefore, efforts in vaccines against HPVs have been directed mainly toward this genotype to dramatically diminish worldwide anogenital cancer incidence.
Therapeutic vaccines are based on induction of an immunologic response against infected cells that express modified viral antigens E6 and E7. Prophylactic vaccines are based on prevention of infection by means of induction of humoral immunity against capsid viral proteins L1 and L2. This article reviews basics of the design of HPV vaccines and the type of vaccines currently being evaluated in clinical studies.
REFERENCES
1. Howley PM. Papillomaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howiey PM. editors). Fundamental virology. 3rd ed. Lippincott-Raven; Philadelphia, PA, USA: 1996. p. 947-978.
2. Sanciemente G. Aspectos moleculares, inmunológicos y patogénicos de la infección por el virus del papiloma humano. Rev Col Dermatol 2000;8:255-265.
3. Lorincz AT, Reid R, Jenson AB et al. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 1992;79:328-327.
4. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1 999;189(1):12-19.
5. zur Hausen H. Yohei lto Memorial Lecture: Papillomaviruses in human cancers. Leukemia 1999;13:1-5.
6. Schiller JT. Papillomavirus-iike particle vaccines for cervical cancer. Mol Med Today 1999;5:209-215.
7. Klein J, Sato A. The HLA system: first of two parts. N Engl J Med 2000;7,343(10):702-709.
8. Roitt I, Brostoff J, Male D. Immunology. tth ed. Mosby, London; 1998. p. 221-228.
9. Frazer IH, Thomas R, Zhou J, Leggatt GR, Dunn L, McMillan N, Tindie RW, Filgueira L, Manders P, Bamard P, Sharkey M. Potential strategies utilized by papillomavirus to evade host immunity. lmmunol Rev 1999;168:131-142.
Nakagawa M, Stites DP, Patel S, Farhat S, Scott M, Hilis NK, Palefsky JM, Moscicki AB. Persistence of human papillomavirus type 16 infection is associated with lack of cytotoxic T lymphocyte response to the E6 antigens. J lnfect Dis 2000;182:595-598.
Keating PJ, Cromme FV, Duggan-Keen M, Snijders PJ, Walboomers JM, et al. Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 1995;72:405-411.
Garrido F, Ruiz-Cabello F, Cabrera T, Pérez-Villar JJ, López- Botet M, et al. lmplications for immunosurveillance of altered HLA class 1 phenotypes in human tumours. lmmunol Today 1997;18:89-95.
Vambutas A, Bonagura VR, Steinberg BM. Altered expresión of TAP-1 and major histocompatibility complex class 1 in laringeal papillomatosis: correlation of TAP-1 with disease. Clin Diagn Lab lmmunol 2000;7:79-85.
Tartour E, Gey A, Sastre-Garau X, Lombard Surin I, Mosseri V, Fridman WH. Prognostic value of intratumoral interferon gamma messenger RNA expression in invasive cervical carcinomas. J Natl Cancer lnst 1998;90:287-294.
Arany I, Rady P, Tyring SK. Alterations in cytokinelantioncogene expression in skin lesions caused by low risk types of human papillomaviruses. Viral lmmunol 1993;6:255-265.
Mota FF, Rayment NB, Kanan JH, Singer A, Chain BM. Differential regulation of HLADQ expression by keratinocytes and Langerhans cells in normal and premalignant cervical epithelium tissue. Antigens 1998;52(3):286-293.
Woodworth CD, Simpson S. Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirus-immortalized, and carcinoma cell lines. Am J Pathol 1993;142:1544-1555.
Tay SK, Jenkins D, Maddox P, Singer A. Lymphocyte phenotypes in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol 1987;94:16-21.
Rowen D, Lacey C. Toward a papillomavirus vaccine. Dermatol Clin 1998,16:835-838.
Comelison T. Human papillomavirus genotype 16 vaccines for cervical cancer prophylaxis and treatment. Curr Opin Oncol 2000;12:466-473.
Da Silva DM, Elben GL, Fausch SC, Wakabayashi MT, Rudolf MP, Veiders MP, Kast WM. Cervical cancer vaccines: emerging concepts and developments. J Cell Physiol 2001;186:169-182.
Nardelli-Haefliger D, Roden RBS, Benyacoub J, et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. lnfect lmmun 1997;65:3328-3336.
Ressing ME, de Jong JH, Brandt RMP, Ddjfhout JW, Benckhuijsen WE, Schreuder GMT, Offringa R, Kast WM, Melief CJM. Differential binding of viral peptides to HLA-A2 alleles. lmplications for human papillomavirus type 16 E7 peptide-based vaccination against cervical carcinoma. Eur J lmmunol 1999;29:1292-1303.
Castaño AR, Lopéz de Castro JA. Structure of the HLA-A*0204 antigen found in South American Indians. Spatial clustering of HLA-A2 subtype polymorphism. lmmunogenetics 1991;34:281-285.
Kois A, Sherris J. HPV vaccines: promise and challenges. Pathology 2000. Artículo disponible en intemet: http:lwww.path. org.com.
Shah KV, Howiey PM. Papillomaviruses. In: Fields BN, Knipe DM. edtors. Field’s virology, 2nd ed. New York: Raven Press; 1990. p. 1625-1650.
Hagensee ME. Human papillomavirus vaccine. Infect Urol 1999;12:11-19.
Disponible en: http:Imedscape.com/content/1999/00/49/69/416990/416990_tab.html.