2022, Number 1
Artificial intelligence in drug repurposing research
Language: Spanish
References: 107
Page: 1-17
PDF size: 635.07 Kb.
ABSTRACT
The development of sophisticated artificial intelligence algorithms and the massive availability of biomedical data have driven accelerated research to discover novel treatments using drugs previously developed and approved for other uses. This process is known as drug repositioning (DR), and it can be addressed by a branch of artificial intelligence (AI) known as machine learning (ML). Machine learning is based on a set of algorithms that, combined with well-established computational techniques in the field of drug discovery, have been able to infer new previously unknown pharmacological properties and relationships with high efficiency. Thus, new targets and potential treatments against various diseases such as cancer and neurodegenerative and infectious diseases have been identified. The objective of this review is to contribute to the literature in Spanish on the use of Artificial Intelligence and machine learning in drug repositioning research.REFERENCES
Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P.& Zhavoronkov, A. (2016). Deep learning applicationsfor predicting pharmacological properties of drugs anddrug repurposing using transcriptomic data. MolecularPharmaceutics, 13(7), 2524–2530. https://doi.org/10.1021/acs.molpharmaceut.6b00248
Feng, Z., Chen, M., Xue, Y., Liang, T., Chen, H., Zhou, Y.,Nolin, T. D., Smith, R. B. & Xie, X. Q. (2020). MCCS:a novel recognition pattern-based method for fast trackdiscovery of anti-SARS-CoV-2 drugs. Briefings inBioinformatics, bbaa260. Advance online publication.https://doi.org/10.1093/bib/bbaa260
Gupta, G. K., Collier, A. L., Lee, D., Hoefer, R. A., Zheleva,V., Siewertsz van Reesema, L. L., Tang-Tan, A. M., Guye,M. L., Chang, D. Z., Winston, J. S., Samli, B., Jansen, R.J., Petricoin, E. F., Goetz, M. P., Bear, H. D. & Tang, A.H. (2020). Perspectives on triple-negative breast cancer:current treatment strategies, unmet needs, and potentialtargets for future therapies. Cancers, 12(9), 2392. https://doi.org/10.3390/cancers12092392
Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H.,Huang, S., Brooks, M., Lee, M. J. & Asadi, H. (2019).Peering into the black box of artificial intelligence:evaluation metrics of machine learning methods. AJR.American Journal of Roentgenology, 212(1), 38–43. https://doi.org/10.2214/AJR.18.20224
Hingorani, A. D., Kuan, V., Finan, C., Kruger, F. A., Gaulton, A.,Chopade, S., Sofat, R., MacAllister, R. J., Overington, J. P.,Hemingway, H., Denaxas, S., Prieto, D. & Casas, J. P. (2019).Improving the odds of drug development success throughhuman genomics: modelling study. Scientific Reports,9(1), 18911. https://doi.org/10.1038/s41598-019-54849-w
Ke, Y. Y., Peng, T. T., Yeh, T. K., Huang, W. Z., Chang, S.E., Wu, S. H., Hung, H. C., Hsu, T. A., Lee, S. J., Song,J. S., Lin, W. H., Chiang, T. J., Lin, J. H., Sytwu, H. K.& Chen, C. T. (2020). Artificial intelligence approachfighting COVID-19 with repurposing drugs. BiomedicalJournal, 43(4), 355–362. https://doi.org/10.1016/j.bj.2020.05.001
Kumar, A., Loharch, S., Kumar, S., Ringe, R. P. & Parkesh, R.(2021). Exploiting cheminformatic and machine learningto navigate the available chemical space of potential smallmolecule inhibitors of SARS-CoV-2. Computational andStructural Biotechnology Journal, 19, 424–438. https://doi.org/10.1016/j.csbj.2020.12.028
Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C.,Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A.,Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong,S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A.,Lander, E. S. & Golub, T. R. (2006). The ConnectivityMap: using gene-expression signatures to connect smallmolecules, genes, and disease. Science, 313(5795), 1929–1935. https://doi.org/10.1126/science.1132939
Levey, A. I., Qiu, D., Zhao, L., Hu, W. T., Duong, D. M.,Higginbotham, L., Dammer, E. B., Seyfried, N. T., Wingo,T. S., Hales, C. M., Gámez Tansey, M., Goldstein, D., Abrol,A., Calhoun, V. D., Goldstein, F. C., Hajjar, I., Fagan, A.M., Galasko, D., Edland, S. D., Hanfelt, J., Lah, J. J. &Weinshenker, D. (2021). A phase II study repurposingatomoxetine for neuroprotection in mild cognitiveimpairment. Brain, en prensa, https://doi.org/10.1093/brain/awab452
Loucera, C., Esteban-Medina, M., Rian, K., Falco, M. M.,Dopazo, J. & Peña-Chilet, M. (2020). Drug repurposingfor COVID-19 using machine learning and mechanisticmodels of signal transduction circuits related to SARSCoV-2 infection. Signal Transduction and Targeted Therapy,5(1), 290. https://doi.org/10.1038/s41392-020-00417-y
Mamoshina, P., Volosnikova, M., Ozerov, I. V., Putin, E.,Skibina, E., Cortese, F. & Zhavoronkov, A. (2018). Machinelearning on human muscle transcriptomic data for biomarkerdiscovery and tissue-specific drug target identification.Frontiers in Genetics, 9, 242. https://doi.org/10.3389/fgene.2018.00242
March-Vila, E., Pinzi, L., Sturm, N., Tinivella, A., Engkvist,O., Chen, H. & Rastelli, G. (2017). On the integrationof in silico drug design methods for drug repurposing.Frontiers in Pharmacology, 8, 298. https://doi.org/10.3389/fphar.2017.0029861. Mattiuzzi, C. & Lippi, G. (2019). Current cancer epidemiology.Journal of Epidemiology and Global Health, 9(4), 217–222.https://doi.org/10.2991/jegh.k.191008.001
Oprea, T. I., Bauman, J. E., Bologa, C. G., Buranda, T., Chigaev,A., Edwards, B. S., Jarvik, J. W., Gresham, H. D., Haynes,M. K., Hjelle, B., Hromas, R., Hudson, L., Mackenzie, D.A., Muller, C. Y., Reed, J. C., Simons, P. C., Smagley, Y.,Strouse, J., Surviladze, Z., Thompson, T., Ursu, O., Waller,A., Wandinger-Ness, A., Winter, S. S., Wu, Y., Young, S.M. Larson, R. S., Willman, C. & Sklar, L. A. (2011). DrugRepurposing from an Academic Perspective. Drug discoverytoday. Therapeutic Strategies, 8(3-4), 61–69. https://doi.org/10.1016/j.ddstr.2011.10.002
Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S.,Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee,C., Norris, A., Sanseau, P., Cavalla, D. & Pirmohamed,M. (2019). Drug repurposing: progress, challenges andrecommendations. Nature reviews Drug discovery, 18(1),41–58. https://doi.org/10.1038/nrd.2018.168
Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz,A., Donghia, N. M., MacNair, C. R., French, S., Carfrae,L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe,A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G.M., Brown, E. D., Jaakkola, T. S., Barzilay, R. & Collins, J.J. (2020). A deep learning approach to antibiotic discovery.Cell, 180(4), 688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021
Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D.,Natoli, T. E., Lu, X., Gould, J., Davis, J. F., Tubelli, A.A., Asiedu, J. K., Lahr, D. L., Hirschman, J. E., Liu, Z.,Donahue, M., Julian, B., Khan, M., Wadden, D., Smith, I. C.,Lam, D., Liberzon, A., Toder, C., Bagul, M., Orzechowski,M., Enache, O. M., Piccioni, F., Johnson, S. A., Lyons, N.J., Berger, A. H., Shamji, A. F., Brooks, A.N., Vrcic, A.,Flynn, C., Rosains, J., Takeda, D.Y., Hu, R., Davison, D.,Lamb, J., Ardlie, K., Hogstrom, L., Greenside, P., Gray,N. S., Clemons, P. A., Silver, S., Wu, X., Zhao, W. N.,Read-Button, W., Wu, X., Haggarty, S. J., Ronco, L. V.,Boehm, J. S., Schreiber, S. L., Doench, J. G., Bittker, J.A., Root, D. E., Wong, B. & Golub, T. R. (2017). A NextGeneration Connectivity Map: L1000 Platform and the First1,000,000 Profiles. Cell, 171(6), 1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049
Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu,A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda,Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A.,Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon,A., Knox, C. & Wilson, M. (2018). DrugBank 5.0: a majorupdate to the DrugBank database for 2018. Nucleic AcidsResearch, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
Zorn, K. M., Sun, S., McConnon, C. L., Ma, K., Chen, E. K.,Foil, D. H., Lane, T. R., Liu, L. J., El-Sakkary, N., Skinner,D. E., Ekins, S. & Caffrey, C. R. (2021). A machine learningstrategy for drug discovery identifies anti-schistosomalsmall molecules. ACS Infectious Diseases, 7(2), 406–420.https://doi.org/10.1021/acsinfecdis.0c00754