2022, Number 1
Exposure to cigarette smoke extract induces proliferation and overexpression of CCL2 in A549 cells and migration in lung fibroblasts
Language: Spanish
References: 45
Page: 1-12
PDF size: 627.79 Kb.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by an aberrant and deregulated remodeling process, where the immune system plays an important role, with smoking being the main risk factor. Cigarette smoke extract (CSE) induces damage and synthesis of cytokines in the epithelium of the respiratory tract. The CCL2 chemokine is elevated in the bronchoalveolar lavage of patients with IPF. However, it is unknown whether CSE induces its profibrotic effect through CCL2. The objective of the study is to evaluate the role of CCL2 in the migration and expression of profibrotic molecules using an In vitro model of A549 lung epithelial cells transfected with the CCL2 gene and CSE-stimulated CCD25 fibroblasts. Our findings indicate that CSE increases the expression of CCL2 and modulates the migration and proliferation of A549 cells and the expression and synthesis of TGF-β1. The conditioned medium of A549 cells that overexpress CCL2 induces migration and overexpression of IL6 in fibroblasts. CCL2 overexpression in CSE-stimulated A549 cells induces a profibrotic effect in CCD25 fibroblasts, serving as an orchestrator in the development of IPF.REFERENCES
https://doi.org/10.1038/nm.19454. Checa, M., Hagood, J. S., Velazquez-Cruz, R., Ruiz, V., Garcia-De-Alba, C., Rangel-Escareño, C., Urrea, F., Becerril, C.,Montaño, M., Garcia-Trejo, S., Cisneros Lira, J., Aquino-Gálvez, A., Pardo, A. & Selman, M. (2016). Cigarettesmoke enhances the expression of profibrotic molecules inalveolar epithelial cells. PLoS ONE, 11(3), 1–19. https://doi.org/10.1371/journal.pone.0150383
Deng, X., Xu, M., Yuan, C., Yin, L., Chen, X., Zhou, X., Li,G., Fu, Y., Feghali-Bostwick, C. A. & Pang, L. (2013).Transcriptional regulation of increased CCL2 expression inpulmonary fibrosis involves nuclear factor-kB and activatorprotein-1. Int. J. Biochem. Cell Biol., 45(7), 1366–1376.https://doi.org/10.1016/j.biocel.2013.04.003
Inoshima, I., Kuwano, K., Hamada, N., Hagimoto, N., Yoshimi,M., Maeyama, T., Takeshita, A., Kitamoto, S., Egashira,K. & Hara, N. (2004). Anti-monocyte chemoattractantprotein-1 gene therapy attenuates pulmonary fibrosis inmice. American Journal of Physiology - Lung Cellularand Molecular Physiology, 286(5), L1038-44. https://doi.org/10.1152/ajplung.00167.2003
Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M.G., Brumwell, A. N., Sheppard, D. & Chapman, H. A. (2006).Alveolar epithelial cell mesenchymal transition developsin vivo during pulmonary fibrosis and is regulated by theextracellular matrix. Proceedings of the National Academyof Sciences of the United States of America, 103(35),13180–13185. https://doi.org/10.1073/pnas.0605669103
King, T. E., Pardo, A. & Selman, M. (2011). Idiopathic pulmonaryfibrosis. The Lancet, 378(9807), 1949–1961. https://doi.org/10.1016/S0140-6736(11)60052-4 King, T. E., Schwarz, M. I., Brown, K., Tooze, J. A., Colby, T.V., Waldron, J. A., Flint, A., Thurlbeck, W. & Cherniack,R. M. (2001). Idiopathic pulmonary fibrosis: Relationshipbetween histopathologic features and mortality. Am. J.Respir. Crit. Care Med., 164(6), 1025–1032. https://doi.org/10.1164/ajrccm.164.6.2001056
Liu, X., Das, A. M., Seideman, J., Griswold, D., Afuh, C. N.,Kobayashi, T., Abe, S., Fang, Q., Hashimoto, M., Kim, H.,Wang, X., Shen, L., Kawasaki, S. & Rennard, S. I. (2007).The CC chemokine ligand 2 (CCL2) mediates fibroblastsurvival through IL-6. American Journal of RespiratoryCell and Molecular Biology, 37(1), 121–128. https://doi.org/10.1165/rcmb.2005-0253OC
Mercer, P. F., Johns, R. H., Scotton, C. J., Krupiczojc, M. A.,Königshoff, M., Howell, D. C. J., McAnulty, R. J., Das, A.,Thorley, A. J., Tetley, T. D., Eickelberg, O. & Chambers,R. C. (2009). Pulmonary Epithelium Is a Prominent Sourceof Proteinase-activated Receptor-1–inducible CCL2 inPulmonary Fibrosis. American Journal of Respiratoryand Critical Care Medicine, 179(5), 414–425. https://doi.org/10.1164/rccm.200712-1827OC
Moodley, Y. P., Misso, N. L. A., Scaffidi, A. K., Fogel-Petrovic,M., McAnulty, R. J., Laurent, G. J., Thompson, P. J. &Knight, D. A. (2003). Inverse Effects of Interleukin-6on Apoptosis of Fibroblasts from Pulmonary Fibrosisand Normal Lungs. Am. J. Respir. Cell Mol. Biol., 29(4),490–498. https://doi.org/10.1165/rcmb.2002-0262OC
Murray, L., Argentieri, R., Farrell, F., Bracht, M., Sheng, H.,Whitaker, B., Beck, H., Tsui, P., Cochlin, K., Evanoff, H.,Hogaboam, C. & Das, A. (2008). Hyper-responsivenessof IPF/UIP fibroblasts: Interplay between TGFβ1, IL-13and CCL2. Int. J. Biochem. Cell Biol., 40(10), 2174–2182.https://doi.org/10.1016/j.biocel.2008.02.016
Nielsen, S. H., Willumsen, N., Leeming, D. J., Daniels, S. J.,Brix, S. & Karsdal, M. A. (2019). Serological Assessmentof Activated Fibroblasts by alpha- Smooth Muscle Actin ( α-SMA ): A Noninvasive Biomarker of Activated Fibroblastsin Lung. Transl. Oncol., 12(2), 368–374. https://doi.org/10.1016/j.tranon.2018.11.004
Raghu, G., Collard, H. R., Egan, J. J., Martinez, F. J., Behr, J.,Brown, K. K., Colby, T. V., Cordier, J. F., Flaherty, K. R.,Lasky, J. A., Lynch, D. A., Ryu, J. H., Swigris, J. J., Wells,A. U., Ancochea, J., Bouros, D., Carvalho, C., Costabel, U.,Ebina, M., Hansell D., Johko T., Kim D., King T., KondohY., Myers J., Muller N., Nicholson A., Richeldi L., SelmanM., Dudden R., Griss B., Protzco S. & Schünemann, H.J. (2011). An Official ATS/ERS/JRS/ALAT Statement:Idiopathic pulmonary fibrosis: Evidence-based guidelinesfor diagnosis and management. American Journal ofRespiratory and Critical Care Medicine, 183(6), 788–824.https://doi.org/10.1164/rccm.2009-040GL
Raghu, G., Martinez, F. J., Brown, K. K., Costabel, U., Cottin,V., Wells, A. U., Lancaster, L., Gibson, K. F., Haddad, T.,Agarwal, P., Mack, M., Dasgupta, B., Nnane, I. P., Flavin,S. K. & Barnathan, E. S. (2015). CC-chemokine ligand 2inhibition in idiopathic pulmonary fibrosis: A phase 2 trialof carlumab. Eur. Respir. J., 46(6), 1740–1750. https://doi.org/10.1183/13993003.01558-2014
Ruigrok, M. J. R., Frijlink, H. W., Melgert, B. N., Olinga, P.& Hinrichs, W. L. J. (2021). Gene therapy strategies foridiopathic pulmonary fibrosis: recent advances, currentchallenges, and future directions. Molecular Therapy -Methods and Clinical Development, 20(March), 483–496.https://doi.org/10.1016/j.omtm.2021.01.003
Viedt, C., Dechend, R., Fei, J., Hänsch, G. M., Kreuzer, J. &Orth, S. R. (2002). MCP-1 induces inflammatory activationof human tubular epithelial cells: Involvement of thetranscription factors, nuclear factor-κB and activatingprotein-1. J. Am. Soc. Nephrol., 13(6), 1534–1547. https://doi.org/10.1097/01.ASN.0000015609.31253.7F
Yang, J, Agarwal, M., Ling, S., Teitz-Tennenbaum, S., Zemans,R., Osterholzer, J., Sisson, T., Kim, K. & Kim, K. K. (2020).Diverse Injury Pathways Induce Alveolar Epithelial CellCCL2/12 Which Promotes Lung Fibrosis. Am. J. Respir.Cell Mol. Biol., 62(5), 622–632. https://doi.org/10.1165/rcmb.2019-0297oc
Yang, Jibing, Wheeler, S. E., Velikoff, M., Kleaveland, K. R.,LaFemina, M. J., Frank, J. A., Chapman, H. A., Christensen,P. J. & Kim, K. K. (2013). Activated Alveolar EpithelialCells Initiate Fibrosis through Secretion of MesenchymalProteins. The American Journal of Pathology, 183(5),1559–1570. https://doi.org/10.1016/j.ajpath.2013.07.016