2021, Number 4
<< Back Next >>
Revista Habanera de Ciencias Médicas 2021; 20 (4)
Evaluation of a new cervical intervertebral disc prosthesis using the finite element method
Lage BJC, Conde FBD, Fleites ME, Barroso BB, Valle PA
Language: Spanish
References: 27
Page: 1-6
PDF size: 1175.95 Kb.
ABSTRACT
Introduction: The initial treatment of cervicalgia due to
degeneration of the intervertebral discs is conservative, but
in case of failure, discectomy is the usual surgical option,
replacing the disc with a bone graft or another structure
that fully or partially fulfills the functions of the former. The
Neurosurgery Service of the Camilo Cienfuegos General
Hospital in Cuba has designed a new cervical intervertebral
disc prosthesis model to treat this disease.
Objective: To evaluate the mechanical performance of
the prosthesis designed through the finite element method
under the usual loads of the cervical spine.
Material and Methods: An experimental study was
carried out using numerical simulation according to the
finite element method, subjecting the prosthesis to the axial
loads recommended by ASTM F2423-11e ISO 18192-1.2011
standards using Free CAD 0.18 software.
Results: The greatest efforts supported by the prosthesis
in the neutral position, anterior flexion and lateral flexion
were 28.79 MPa, 52.29 MPa and 55.59 MPa, respectively. The
prosthesis did not suffer any fracture as it did not exceed the
values prior to the elastic limit of the material that constitutes
it. The greatest deformation described was 1 μm.
Conclusions: The highest concentration of efforts in the
prosthesis was located at the point of contact of the prismatic
cavity of the upper part when making contact with the prism
of the lower part. The designed device did not undergo any
significant deformation or fracture at the applied loads.
REFERENCES
Abdou S. Inter-vertebral disc prosthesis with variable rotational stop and methods of use. Estados Unidos; US8303660 B1. November 2012.
Vialle LR, Manubu I, Riew KD. AOSpine Masters Series. Cervical Degenerative Condition. New York: Thieme; 2015.
María PP. Cervical Spine. Minimally Invasive and Open Surgery. New York: Springer; 2016.
Lafuente J. El implante discal cervical como alternativa a la artrodesis en el tratamiento quirúrgico de la cervicoartrosis[Tesis Doctoral]. Barcelona: Universidad Autónoma de Barcelona; 2000.
Lage JC, Conde BD, Fleites E. Tratamiento de la hernia discal cervical. Hospital General Provincial “CamiloCienfuegos”. Gaceta Médica Espirituana [Internet]. 2020 [Citado 02/08/2020];22(2):[Aprox. 2p.]. Disponible en: http://www.revgmespirituana.sld.cu/index.php/gme/issue/view/117
Chin KR, Pencle F, Benny A, Seale JA. Placing ball and socket cervical total disc replacement using instant center ofrotation. Journal of Orthipaedics. 2019; 16: 390-2.
Hammer C, Heller J, Kepler C. Epidemiology and pathophysiology of cervical disc herniation. Seminars in SpineSurgery. 2016; 28: 64-7.
Ting kui W. Cervical disc arthroplasty for the treatment of adjacent segment disease: A systematic review of clinicalevidence. Clinical Neurology and Neurosurgery. 2017; 162: 1-11.
Tingkui W. Artificial cervical disc replacement with the Prestige-LP prosthesis forthe treatment of non-contiguous 2-level cervical degenerative discdisease: A minimum 24-month follow-up. Clinical Neurology and Neurosurgery. 2017;152: 57-62.
Nesterenko SO, Riley LH, Skolasky, RL. Anterior cervical discectomy and fusion versus cervical disc arthroplasty:current state and trends in treatment for cervical disc pathology. Spine. 2012; 37: 1470-74.
Coombs DJ, Rullkoetter PJ, Laz PJ. Efficient probabilistic finite element analysis of a lumbar motion segment. Journalof Biomechanics. 2017; 61: 65-74.
Muñoz J. Modelo numérico de una unidad vertebral funcional humana. [Tesis de grado]. Madrid: UniversidadCarlos III Madrid; 2015.
Celigüeta JT. Método de los elementos finitos para análisis estructural. 3 ed. San Sebastián: UNICOPIA C.B; 2008.
Schwer LE. Guide for Verification and Validation in Computational Solid Mechanics. United States of America: TheAmerican Society of Mechanical Engineers; 2006.
Fragkou K. Mechanical and Computational Modeling of Implants. [Tesis de Mestría]. Grecia:Universidad dePatras; 2017.
ASTM F2423-11 Standard Guide for Functional, Kinematic, and Wear Assessment of Total Disc Prostheses. En:Annual Book of ASTM Standards. USA: ASTM International; 2011. p. 1-9.
International Organization for Standardization. ISO 18192-1.2011 Implants for Surgery-Wear of Total IntervertebralSpinal Disc Prostheses-Part 1: Loading and Displacement Parameters for Wear Testing and Corresponding EnvironmentalConditions for Tests. Geneva: International Organization for Standardization; 2011.
Protechno. Advanced products for dental labs [Internet]. España: Protechno; 2017 [Citado 02/08/2020].Disponible en: www.protechno.com
O´Brrien WJ, Ryge G. Materiales dentales y su selección. La Habana: ECIMED; 2005.
Blancas I, Aguilar S. Diseño de prótesis de disco intervertebral lumbar [Tesis de grado]. Mexico: UniversidadNacional Autónoma de México; 2014.
Doicin CV, Ulmeanu ME, Frincu AS, Echache VC. Concept Development of a New Lumbar Intervertebral DiskImplant. MATEC Web of Conf. 2017; 137: 1-12.
Li Y. Finite element analysis of influence of axial position of center of rotation of a cervical total disc replacementon biomechanical parameters: simulated 2-level replacement based on a validated model. WorldNeurosuegery. 2017; 106: 932-8.
Chen WM. Strain behavior of malaligned cervical spine implanted with metal-onpolyethylene, metal-on-metal, andelastomeric artificial disc prostheses - A finite element analysis. Clinical Biomechanics. 2018; 59:1 9-26.
Goel V, Faizan A, Palepu V, Bhattacharya S. Parameters that effect spine biomechanics following cervical discreplacement. European Spine Journal. 2012; 21 (5): 688-99.
Yu CC. A new cervical artificial disc prosthesis based on physiological curvature of end plate: a finite elementanalysis. The Spine Journal. 2016; 16: 1384-91.
Jun Z. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion andloading of surrounding soft tissue. European Spine Journal. 2014; 23: 613-21.
Ho J, Man W, Hyuk Y, Jahng TA. A Biomchanical Analysis of an Artificial Disc Whith a Shock-absorbing FinCoreProperty by Using Whole-cervical Spine Finite Element Analysis. SPINE. 2016; 41 (15): E893-E901.