2021, Number 4
<< Back Next >>
Revista Habanera de Ciencias Médicas 2021; 20 (4)
Metabolic and oxidative stress markers in rats with monosodium glutamate-induced obesity
Suárez RG, Capote GC, Acosta ST, Fernández RT, Clapés HS
Language: Spanish
References: 34
Page: 1-7
PDF size: 828.98 Kb.
ABSTRACT
Introduction: Obesity, especially visceral, is a major
risk factor for several diseases such as Type 2 diabetes
mellitus, cardiovascular diseases, atherosclerosis,
dyslipidemia, non-alcoholic fatty liver disease, and
cancer. Oxidative stress may be a unifying mechanism
for the development of major obesity-related
comorbidities.
Objective: To evaluate the prooxidant-antioxidant
balance in monosodium glutamate-induced obesity in
Wistar rats (MSG- obese rats).
Material and Methods: Female Wistar rats received
subcutaneous (sc) injections of monosodium glutamate
solution (4 mg/g of body weight) or vehicle (NaCl 0,9 %;
control) to induce obesity during the neonatal period.
At 90 days of life, obesity was determined. At 180 days
of life, rats were anesthetized and killed to obtain blood
and liver samples for the determination of biochemical
markers.
Results: MSG obese rats presented significantly
higher triglycerides, uric acid and insulin levels, as
well as elevated HOMA and TyG indexes. Increased
concentrations of nitrate and nitrite, 2-deoxyribose
oxidation products and advanced oxidation protein
products levels were observed in obese rats.
Conclusions: Obesity induced by monosodium
glutamate reproduces the main metabolic alterations
associated with human visceral obesity, among which
oxidative stress is included. This model may be useful
for the evaluation of therapeutic strategies to prevent
or decrease complications associated with obesity.
REFERENCES
Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health Effects of Overweight and Obesity in195 Countries over 25 Years. N Engl J Med. 2017; 377 (1): 13-27.
Varona Pérez P, Gámez SD, Díaz SME. Impacto del sobrepeso y obesidad en la mortalidad por enfermedades notrasmisibles en Cuba. Revista Cubana de Medicina General Integral. 2018; 34 (3): 71-81.
Vibha R, Deep G, Singh RK, Palle K, Yadav U. Oxidative stress and metabolic disorders: Pathogenesis andtherapeutic strategies. Life Sci. 2016; 148: 183-93.
Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013; 93 (1): 359-404.
Masschelin PM, Cox AR, Chernis N, Hartig SM. The Impact of Oxidative Stress on Adipose Tissue Energy Balance.Front. Physiol. 2020; 10:1638.
Hernández RJ, Mahmoud AM, Königsberg M, López Díaz NE. Obesity: pathophysiology, monosodium glutamateinducedmodel and anti-obesity medicinal plants. Biomed Pharmacother. 2019; 111: 503-16.
Krinke GJ. The laboratory rat: the handbook of experimental animals. London: Academic Press; 2000.
Bernardis LL, Patterson BD. Correlation between Lee Index and carcass fat content in weanling and adult femalerats with hypotalamic lesions. J Endocrinol. 1968; 40 (4): 527-8.
American Veterinary Medical Association. AVMA Guidelines for the euthanasia of animals: 2020 [Internet].Bethesda: National Institutes of Health; 2020 [Citado 20/06/2020]. Disponible en: https://olaw.nih.gov/news/avmaguidelines-euthanasia-animals-2020-edition-posted.html
Arranz C, González Suárez RM. Utilización de un método rápido para la separación de la hormona libre y unidaen el radioinmunoensayo de insulina. Rev Cubana Invest Biomed. 1988; 7: 150-6.
Mathews DR, Hosker JP, Rudenki AS, Nailor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulinresistance and Beta Cell Function from fasting plasma glucose and insulin concentration in man. Diabetología. 1985;28 (7): 412-9.
Cacho J, Sevillano J, De Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin sensitivityduring pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2008; 295 (5): E1269-76.
Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL. Índice triglicéridos y glucosa: un indicador útil deinsulinorresistencia. Endocrinol Nutr. 2014; 61 (10): 533-40
Hisakazu M. Determination of nitrate in biological fluids using nitrate reductase in a flow system. J Health Sci.2001; 47 (1): 65-7.
Witko Sarsat V, Friedlander M, Capeillere Blandin C, Nguyen Khoa T, Nguyen AT, Zingraff J, et al. Advancedoxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996; 49 (5): 1304-13.
Beutler E. Improved assay of the enzymes of glutathione synthesis. Clin Chim Acta. 1986; 158 (1): 115-23.
Bunce M. PCR-SSP typing. En: Bidewell Jl, Navarrete C. Histocompatibility testing. England: Imperial CollegePress; 2000.p.149-86.
Bayne K, Turner Patricia V. Laboratory animal welfare. London: Academic Press; 2014.
Zubiría MG, Alzamendi A, Moreno G, Portales A, Castrogiovanni D, Spinedi E, et al. Relationship between thebalance of hypertrophic/hyperplastic adipose tissue expansion and the metabolic profile in a high glucocorticoidsmodel. Nutrients. 2016; 8 (7): 89-91.
Farraú F, Korbonits M. Metabolic comorbidities in Cushing’s Síndrome. Eur J Endocrinol. 2015; 173: M133-57.
John K, Marino JS, Sánchez ER, Hinds TD. The glucocorticoid receptor: cause or cure for obesity?. Am J PhysiolEndocrinol Metab. 2016; 310 (4): E249-57.
Damiani Cavero JS, Olivera García H, Núñez López N, Dovale Borjas A, Ferrero Rodríguez LM, Cruz García MA, etal. Sistema nervioso y endocrinología básica. En su: Morfofisiología. 2 ed. La Habana: Ecimed; 2015. p.222.
Damasceno DC, Sinzato YK, Bueno A, Dallaqua B, Lima PH, Calderon I, et al. Metabolic Profile and Genotoxicityin Obese Rats Exposed to Cigarette Smoke. Obesity . 2013; 21(8):1596-601.
França LM, Freitas LN, Chagas VT, Coêlho CF, Barroso WA, Costa GC, et al. Mechanisms underlyinghypertriglyceridemia in rats with monosodium L-glutamate-induced obesity: Evidence of XBP-1/PDI/MTP axisactivation. Biochem Biophys Res Commun. 2014; 443 (2): 72-3.
França LM, Coêlho CFF, Freitas LNC, Souza ILS, Chagas VT, Debbas V, et al. Syzygium cumini leaf extract revertshypertriglyceridemia via downregulation of the hepatic xbp-1s/pdi/mtp axis in monosodium l-glutamate-inducedobese rats. Oxid Med Cell Longev [Internet]. 2019 [Citado 20/06/2020]; 219: 9417498. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446099/
Lubaczeuski C, Balbo SL, Ribeiro RA, Vettorazzi JF, Santos Silva JC, Carneiro EM, et al. Vagotomy amelioratesislet morphofunction and body metabolic homeostasis in MSG-obese rats. Braz J Med Biol Res. 2015; 48 (5): 447-57.
Sokolowska E, Blachnio Zabielska A. The Role of Ceramides in Insulin Resistance. Front Endocrinol . 2019; 10: 577.
Villagarcía HG, Castro MC, Arbeláez LG, Schinella G, Massa ML, Spinedi E, et al. N-Acetyl-L-Cysteine treatmentefficiently prevented pre-diabetes and inflamed-dysmetabolic liver development in hypothalamic obese rats. Life Sci.2018; 199: 88-95.
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, et al. Measurement of reactive oxygenspecies, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statementfrom the american heart association. Circ Res. 2016; 119 (5): e39–e75.
Da Cunha NV, Pinge Filho P, Panis C, Silva BR, Pernomian L, Grando MD, et al. Decreased endotelial nitric oxide,systemic oxidative stress, and increased sympathetic modulation contribute to hypertension in obese rats. Am J PhysiolHeart Circ Physiol. 2014; 306 (10): H1472-80.
Seiva F, Chuffa LG, Pereira C, Amorim JP, Fernandes AA. Quercetin ameliorates glucose and lipid metabolism andimproves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations. Food Chem Toxicol.2012; 50 (10): 3556-61.
Masschelin PM, Cox AR, Chernis N, Hartig SM. The Impact of Oxidative Stress on Adipose Tissue Energy Balance.Front Physiol. 2020; 10: 1638.
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolicsyndrome. Biochim Biophys Acta Mol Basis Dis. 2018; 1864 (8): 2557-65.
Sharaf El, Din UA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovasculardiseases: a review. J Adv Res. 2017; 8 (5): 537-54