2021, Number 4
<< Back Next >>
Rev Cubana Plant Med 2021; 26 (4)
Hepatoprotective effect of Morus nigra L. leaves on acetaminophen induced liver damage in rats
Gonzales CEG, Arce RFA, Magaño CMN, Ramírez RSA, Paz-Aliaga A
Language: Spanish
References: 52
Page:
PDF size: 485.41 Kb.
ABSTRACT
Introduction: Acetaminophen, one of the most commonly used analgesic and antipyretic drugs, is characterized by its hepatotoxic effects after prolonged administration, due to the excessive formation of intermediate N-acetyl-p-benzoquinone imine, a product of phase I metabolism. Because of their chemical composition and antioxidant activity, Morus nigra L. leaves display therapeutic activity.
Objective: Evaluate the hepatoprotective effect of Morus nigra L. hydroalcoholic extract on acetaminophen-induced liver damage in rats.
Methods: Twenty rats (Rattus norvergicus albinus) were distributed into four groups: control, acetaminophen (250 mg/kg) as hepatotoxicity control group, acetaminophen + silymarin (100 mg/kg) and acetaminophen + Morus nigra L. (250 mg/kg). Liver function enzymes ALT and AST were measured on days 1, 6, 12 and 21. Additionally, a histopathological study was conducted of liver sections.
Results: Acetaminophen raised ALT and AST levels, which remained high after administration of distilled water as placebo until day 21. Silymarin and Morus nigra L. leaf extract lowered ALT and AST levels to values similar to the control (baseline).
Conclusions: Results show that administration of Morus nigra L. improves the hepatic lesion caused by acetaminophen with an effect significantly similar to that of silymarin.
REFERENCES
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2014;70(1):151-71. DOI: https://doi.org/10.1016/j.jhep.2018.09.014
Sun J, Zhou B, Tang C, Gou Y, Chen H, Wang Y, et al. Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides. Internat J Biolog Macromolec. 2018;115:69-76. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.033
Stine JG, Lewis JH. Hepatotoxicity of antibiotics: A Review and update for the Clinician. Clinic Liver Dis. 2013;17(4):609-42. DOI: https://doi.org/10.1016/j.cld.2013.07.008
Parvez MK, Al-Dosari MS, Arbab AH, Niyazi S. The in vitro and in vivo antihepatotoxic, antihepatitis B virus and hepatic CYP450 modulating potential of Cyperus rotundus. Saud Pharma J. 2019;27(4):558-64. DOI: https://doi.org/10.1016/j.jsps.2019.02.003
Zhang X, Zhang R, Yang H, Xiang Q, Jiang Q, He Q, et al. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda. Chem Biolog Interact. 2016;254:45-53. DOI: https://doi.org/10.1016/j.cbi.2016.05.030
Luyendyk JP, Ganey PE, Fullerton A, Roth RA. 2.13 Inflammation and Hepatotoxicity. In: CA McQueen (Ed.). 3rd. Ed. Comprehensive toxicology. 2020:324-45. DOI: https://doi.org/10.1016/B978-0-12-801238-3.95664-2
Rathee D, Kamboj A, Sachdev RK, Sidhu S. Hepatoprotective effect of Aegle marmelos augmented with piperine co-administration in paracetamol model. Rev Brasil de Farmacog. 2018;28(1):65-72. DOI: https://doi.org/10.1016/j.bjp.2017.11.003
Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity: A mitochondrial perspective. Advan Pharmacol. 2019;85:195-219. DOI: https://doi.org/10.1016/bs.apha.2019.01.007
Coen M. Metabolic phenotyping applied to preclinical and clinical studies of acetaminophen metabolism and hepatotoxicity. Drug Metabol Rev. 2015;47(1):29-44. DOI: https://doi.org/10.3109/03602532.2014.982865
Mohammed NEM, Messiha BAS, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saud Pharma J. 2016;24(6):635-44. DOI: https://doi.org/10.1016/j.jsps.2015.04.004
Ogilvie JD, Rieder MJ, Lim R. Acetaminophen overdose in children. CMAJ. 2012;184(13):1492-6. DOI: https://doi.org/10.1503/cmaj.111338
Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Research. 2006;124(5):491-504. PMID: 17213517
Vivekanandan L, Sheik H, Singaravel S, Thangavel S. Ameliorative effect of silymarin against linezolid-induced hepatotoxicity in methicillin-resistant Staphylococcus aureus (MRSA) infected Wistar rats. Biomed Pharmaco. 2018;108:1303-12. DOI: https://doi.org/10.1016/j.biopha.2018.09.133
Wei H, Zhu JJ, Liu XQ, Feng WH, Wang ZM, Yan LH. Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects. Cogent Chem. 2016;2(1):1212320. DOI: https://doi.org/10.1080/23312009.2016.1212320
Dalmagro AP, Camargo A, Zeni ALB. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metabol Brain Disease. 2017;32(6):1963-73. DOI: https://doi.org/10.1007/s11011-017-0089-y
Lim SH, Choi CI. Pharmacological Properties of Morus nigra L. (black mulberry) as a promising nutraceutical resource. Nutrients. 2019;11(2):437. DOI: https://doi.org/10.3390/nu11020437
Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D’Acquarica I, et al. Naturally occurring diels-alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Europ J Med Chem. 2018;144:277-88. DOI: https://doi.org/10.1016/j.ejmech.2017.11.087
Zhou R, Li D, Kou Q, Jiao Z, Ning Z. Evaluation of antiinflammatory, antimicrobial and wound healing activity of Morus nigra. South Afric J Bot. 2019;124:540-5. DOI: https://doi.org/10.1016/j.sajb.2019.06.021
Hago S, Mahrous EA, Moawad M, Abdel-Wahab S, Abdel-Sattar E. Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Nat Prod Research. 2019;1-7. DOI: https://doi.org/10.1080/14786419.2019.1601094
Volpato GT, Calderon IMP, Sinzato S, Campos KE, Rudge MVC, Damasceno D C. Effect of Morus nigra aqueous extract treatment on the maternal fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharma. 2011;138(3):691-6. DOI: https://doi.org/10.1016/j.jep.2011.09.044
de Mesquita Padilha M, Vilela FC, da Silva MJD, dos Santos MH, Alves-da-Silva G, Giusti-Paiva A. Antinociceptive effect of the extract of Morus nigra leaves in mice. J Med Food. 2009;12(6):1381-5. DOI: https://doi.org/10.1089/jmf.2009.0012
Padilha MM, Vilela FC, Rocha CQ, Dias MJ, Soncini R, Santos MH, et al. Antiinflammatory properties of Morus nigra leaves. Phytother Research. 2010;24(10):1496-500. DOI: https://doi.org/10.1002/ptr.3134
Zoofishan Z, Kúsz N, Csorba A, Tóth G, Hajagos-Tóth J, Kothencz A, et al. Antispasmodic activity of prenylated phenolic compounds from the root bark of Morus nigra. Molecules. 2019;8:24(13). DOI: https://doi.org/10.3390/molecules24132497
Figueredo KC, Guex CG, Reginato FZ, Haas da Silva AR, Cassanego GB, Lhamas CL, et al. Safety assessment of Morus nigra L. leaves: Acute and subacute oral toxicity studies in Wistar rats. J Ethnopharma. 2018;224:290-6. DOI: https://doi.org/10.1016/j.jep.2018.05.013
Fahimi Z, Jahromy MH. Effects of blackberry (Morus nigra) fruit juice on levodopa-induced dyskinesia in a mice model of Parkinson’s disease. J of Experim Pharma. 2018;10:29-35. DOI: https://doi.org/10.2147/JEP.S161782
Qadir MI, Ali M, Ibrahim Z. Anticancer activity of Morus nigra leaves extract. Bangla J Pharma. 2014;9(4):496-7. DOI: https://doi.org/10.3329/bjp.v9i4.19783
Turan I, Demir S, Kilinc K, Burnaz NA, Yaman SO, Akbulut K, et al. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells. Saudi Pharma J. 2017;25(2):241-8. DOI: https://doi.org/10.1016/j.jsps.2016.06.002
Freitas MM, Fontes PR, Souza PM, Fagg CW, Guerra ENS, Nóbrega YK, et al. Extracts of Morus nigra L. Leaves standardized in chlorogenic acid, rutin and isoquercitrin: Tyrosinase inhibition and cytotoxicity. PLOS ONE. 2016;11(9):e0163130. DOI: https://doi.org/10.1371/journal.pone.0163130
Ribeiro AEAS, Soares JMD, Silva HAL, Wanderley CW, Moura CA, de Oliveira-Junior RG, et al. Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed Pharma. 2019;111:1046-56. DOI: https://doi.org/10.1016/j.biopha.2019.01.011
Dalmagro AP, Camargo A, da Silva Filho HH, Valcanaia MM, de Jesus PC, Zeni ALB. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind Crops Prod. 2018;123:323-30. DOI: https://doi.org/10.1016/j.indcrop.2018.06.085
Nastić N, Borrás Linares I, Lozano Sánchez J, Švarc Gajić J, Segura Carretero A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J Ind Engin Chem. 2018;68:282-92. DOI: https://doi.org/10.1016/j.jiec.2018.07.055
Geyikoglu F, Yilmaz EG, Erol HS, Koc K, Cerig S, Ozek NS, et al. Hepatoprotective role of thymol in drug-induced gastric ulcer Model. Annals Hepat. 2018;17(6):980-91. DOI: https://doi.org/10.5604/01.3001.0012.7198
Azarmehr N, Afshar P, Moradi M, Sadeghi H, Sadeghi H, Alipoor B, et al. Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats. Heliyon. 2019;5(7):e02072. DOI: https://doi.org/10.1016/j.heliyon.2019.e02072
Abirami A, Nagarani G, Siddhuraju P. Hepatoprotective effect of leaf extracts from Citrus hystrix and C. maxima against paracetamol induced liver injury in rats. Food Sci Human Wellness. 2015;4(1):35-41. DOI: https://doi.org/10.1016/j.fshw.2015.02.002
Mohammadi S, Nezami A, Esmaeili Z, Rouini MR, Ardakani YH, Lavasani H, et al. Pharmacokinetic changes of tramadol in rats with hepatotoxicity induced by ethanol and acetaminophen in perfused rat liver model. Alcohol. 2019;77:49-57. DOI: https://doi.org/10.1016/j.alcohol.2018.09.006
Ozcelik E, Uslu S, Erkasap N, Karimi H. Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. Kaoh J Med Sci. 2014;30(6):286-90. DOI: https://doi.org/10.1016/j.kjms.2014.02.003
Binitha RRV, Shajahan MA, Muhamed J, Anilkumar TV, Premlal S, Indulekha VC. Hepatoprotective effect of Lobelia alsinoides Lam. in Wistar rats. J Ayurv Integ Med. 2019. DOI: https://doi.org/10.1016/j.jaim.2019.04.004
Fahmy AA, Fouad MM, Arafat OM, Abd El-Fathaah E. Aminoguanidine potentiates the hepatoprotective effect of silymarin in CCL4 treated rats. Ann Hepat. 2011;10(2):207-15. DOI: https://doi.org/10.1016/S1665-2681(19)31570-4
Ren X, Xin LT, Zhang MQ, Zhao Q, Yue SY, Chen KX, et al. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed Pharma. 2019;117:109190. DOI: https://doi.org/10.1016/j.biopha.2019.109190
Mallhi TH, Qadir MI, Khan YH, Ali M. Hepatoprotective activity of aqueous methanolic extract of Morus nigra against paracetamol-induced hepatotoxicity in mice. Bangla J Pharma 2014;9(1):60-6. DOI: https://doi.org/10.3329/bjp.v9i1.17337
Reitman S, Frankel S. A colorimetric method for the determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Amer J Clin Pathol. 2017;28(1):56-63. DOI: https://doi.org/10.1093/ajcp/28.1.56
Maes M, Vinken M, Jaeschke H. Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharma. 2016;290:86-97. DOI: https://doi.org/10.1016/j.taap.2015.11.016
Uchida NS, Silva-Filho SE, Cardia GFE, Cremer E, Silva Comar FM, Silva EL, et al. Hepatoprotective effect of citral on acetaminophen-induced liver toxicity in mice. Evid Bas Compl Altern Med. 2017:1796209. DOI: https://doi.org/10.1155/2017/1796209
Hosseini AS, Akramian M, Khadivi A, Salehi Arjmand H. Phenotypic and chemical variation of black mulberry (Morus nigra) genotypes. Ind Crops Prod. 2018;117:260-71. DOI: https://doi.org/10.1016/j.indcrop.2018.03.007
Tag HM. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Compl Altern Med. 2015;15(1):252. DOI: https://doi.org/10.1186/s12906-015-0744-y
Thabti I, Marzougui N, Elfalleh W, Ferchichi A. Antioxidant composition and antioxidant activity of white (Morus alba L.), black (Morus nigra L.) and red (Morus rubra L.) mulberry leaves. Act Bot Gallica. 2011;158(2):205-14. DOI: https://doi.org/10.1080/12538078.2011.10516267
Iqbal S, Younas U, Sirajuddin Chan KW, Sarfraz RA, Uddin MK. Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. Inter J Molec Sci. 2012;13(6):6651-64. DOI: https://doi.org/10.3390/ijms13066651
Ayaz MA, Najma M, Devanand LD, Muhammad BM, Amanat PA. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol J Food Nut Sci. 2010 [acceso: 10/12/2021];60(1). Disponible en: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-70198bea-e960-47bd-9de9-d821124cb52b
Pérez Gregorio MR, Regueiro J, Alonso González E, Pastrana Castro LM, Simal Gándara J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT Food Sci Techn. 2011;44(8):1793-1801. DOI: https://doi.org/10.1016/j.lwt.2011.03.007
Sánchez Salcedo EM, Tassotti M, Del Rio D, Hernández F, Martínez JJ, Mena P. (Poly) phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chem. 2016;212:250-55. DOI: https://doi.org/10.1016/j.foodchem.2016.05.121
Wang L, Gong T, Chen RY. Two new prenylflavonoids from Morus nigra L. Chin Chem Letters. 2009;20(12):1469-71. DOI: https://doi.org/10.1016/j.cclet.2009.06.035
Xu LJ, Yu MH, Huang CY, Niu LX, Wang YF, Wu CZ, et al. Isoprenylated flavonoids from Morus nigra and their PPAR γ agonistic activities. Fitoterapia. 2018;127:109-14. DOI: https://doi.org/10.1016/j.fitote.2018.02.004