2023, Number 4
<< Back Next >>
salud publica mex 2023; 65 (4)
Aerial release of Aedes aegypti male mosquitoes using an unmanned aerial vehicle: a novel control strategy
Valdez-Delgado KM, Ríos-Delgado JC, Nettel-Cruz JA, Angulo-Kladt R, Villarreal-Treviño C
Language: English
References: 26
Page: 387-393
PDF size: 304.85 Kb.
ABSTRACT
Objective. To development of a methodology for the
chilling, handling, transport, and release of male
Aedes aegypti
mosquitoes, reared in insectary conditions to release in the
field with unmanned vehicles to compete sexually with wild
males in the field.
Materials and methods. A population
of
Ae. aegypti from different areas in Tapachula, Chiapas, was
used. Laboratory tests were conducted: Effect of temperature
and cooling time on the knockdown, recovery of males, and
copulatory success.
Results. The chilling temperature of
3 ± 1ºC for 30 min, was used as a knockdown temperature
before handling, packing, transportation, and aerial release.
The males subjected to the entire process, including the
semi-field aerial release test, showed normal sexual behavior
activity, obtaining 100% of females inseminated.
Conclusion.
These results present the feasibility of applying a new
control methodology using unmanned aerial vehicle (UAV)
as support for the sterile insect release technique (SIT), use
of Wolbachia or both, in male
Ae. aegypti, for the design of
strategies to control their populations.
REFERENCES
Ibañez-Bernal S, Gómez-Dantés H. Los vectores del dengue en México:una revisión crítica. Salud Publica Mex. 1995;37(supl):s53-63.
Kuri-Morales P, Correa-Morales F, González-Acosta C, Sánchez-TejedaG, Dávalos-Becerril E, Fernanda Juárez-Franco, et al. First report of Stegomyiaaegypti (= Aedes aegypti) in Mexico City, Mexico. Med Vet Entomol.2017;31(2):240-2. https://doi.org/10.1111/mve.12225
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoesresult in increased risk of pathogen transmission. Trends Parasitol.2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001
Díaz-González EE, Kautz TF, Dorantes-Delgado A, Malo-García IR,Laguna-Aguilar M, Langsjoen RM, et al. First Report of Aedes aegypti transmissionof chikungunya virus in the Americas. Am J Trop Med Hyg. 2015;93(6):1325-9. https://doi.org/10.4269/ajtmh.15-0450
Garcia-Luna SM, Weger-Lucarelli J, Rückert C, Murrieta RA, YoungMC, Byas AD, et al. Variation in competence for ZIKV transmissionby Aedes aegypti and Aedes albopictus in México. PLoS Negl Trop Dis.2018;12(7):e0006599. https://doi.org/10.1371/journal.pntd.0006599
Villegas-Trejo A, Che-Mendoza A, González-Fernández M, Guillermo-May G, González-Bejarano H, Dzul-Manzanilla F, et al. Control enfocadode Aedes aegypti en localidades de alto riesgo de transmisión de dengueen Morelos, México. Salud Publica Mex. 2011;53(2):141-51. https://doi.org/10.1590/s0036-36342011000200007
Ordoñez-González JG, Cisneros-Vázquez LA, Danis-Lozano R, Valdez-Delgado KM, Fernández-Salas I, Penilla-Navarro RP, et al. Nebulizacióntérmica intradomiciliar de la mezcla de flupyradifurona y transflutrina enmosquitos Aedes aegypti susceptibles y resistentes a piretroides en el Sur deMéxico. Salud Publica Mex. 2020;62(4):432-8. https://doi.org/10.21149/11142
López-Solís AD, Castillo-Vera A, Cisneros J, Solis-Santoyo F, Penilla-NavarroRP, Black IV WC, et al. Resistencia a Insecticidas en Aedes Aegypti yAedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. SaludPublica Mex. 2020;62(4):439-46. https://doi.org/10.21149/10131
Janich AJ, Saavedra-Rodriguez K, Vera-Maloof FZ, Kading RC, RodríguezAD, Penilla-Navarro P, et al. Permethrin resistance status and associatedmechanisms in Aedes albopictus (Diptera: Culicidae) From Chiapas, Mexico. JMed Entomol. 2021;58(2):739-748. https://doi.org/10.1093/jme/tjaa197
Donald CL, Siriyasatien P, Kohl A. Toxorhynchites species: a review ofcurrent knowledge. Insects. 2020;11(11):747. https://doi.org/10.3390/insects11110747
Huang Y-JS, Higgs S, Vanlandingham DL. Biological control strategiesfor mosquito vectors of arboviruses. Insects. 2017;8(1):21. https://doi.org/10.3390/insects8010021
Scholte E-J, Knols BGJ, Samson RA, Takken W. Entomopathogenicfungi for mosquito control: A review. J Insect Sci. 2004; 4:19 https://doi.org/10.1093/jis/4.1.19
Liu WL, Yu HY, Chen YX, Chen BY, Leaw SN, Lin CH, et al. Lab-scalecharacterization and semifield trials of Wolbachia Strain wAlbB in aTaiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis.2022;16(1):e0010084. https://doi.org/10.1371/journal.pntd.0010084
World Health Organization. Global vector control response 2017–2030. Geneva: World Health Organization, 2017.
Villarreal C, Arredondo-Jiménez JI, Rodriguez MH, Ulloa A. Colonizationof Anopheles pseudopunctipennis from Mexico. J Am Mosq ControlAssoc. 1998;14(4):369-72.
Danis-Lozano R, Correa-Morales F. Cría de mosquitos Culicidae yevaluación de insecticidas de uso en salud pública. Cuernavaca: InstitutoNacional de Salud Pública, 2021.
Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C,Chansang U, Mongkalangoon P. Combined sterile insect technique andincompatible insect technique: The first proof-of-concept to suppress Aedesaegypti vector populations in semi-rural settings in Thailand. PLoS Negl TropDis. 2019;13(10):e0007771. https://doi.org/10.1371/journal.pntd.0007771
Caragata EP, Dutra HL, Moreira LA. Inhibition of Zika virus by Wolbachiain Aedes aegypti. Microbcell. 2016;3(7):293-5. https://doi.org/10.15698/mic2016.07.513
Culbert NJ, Gilles JRL, Bouyer J. Investigating the impact of chillingtemperature on male Aedes aegypti and Aedes albopictus survival. PLoSOne. 2019;14(8):e0221822. https://doi.org/10.1371/journal.pone.0221822
Diniz DFA, de Albuquerque CMR, Oliva LO, de Melo-Santos MAV, AyresCFJ. Diapause and quiescence: dormancy mechanisms that contribute tothe geographical expansion of mosquitoes and their evolutionary success.Parasit Vectors. 2017;10(1):310. https://doi.org/10.1186/s13071-017-2235-0
Villarreal-Treviño C, Ríos-Delgado JC, Penilla-Navarro R, Rodríguez AD,López JH, Nettel-Cruz J, et al. Composition and abundance of anophelinespecies according to habitats diversity in México. Salud Publica Mex.2020;62(4):388-401. https://doi.org/10.21149/10111
Culbert NJ, Maiga H, Somda NSB, Gilles JRL, Bouyer J, Mamai W. Longevityof mass-reared, irradiated and packed male Anopheles arabiensisand Aedes aegypti under simulated environmental field conditions. ParasitVectors. 2018;11(1):603. https://doi.org/10.1186/s13071-018-3191-z
Culbert NJ, Lees RS, Vreysen MJB, Darby AC, Gilles JRL. Optimisedconditions for handling and transport of male Anopheles arabiensis: effectsof low temperature, compaction, and ventilation on male quality. EntomolExp Appl. 2017;164(3):1-8. https://doi.org/10.1111/eea.12610
Villarreal-Treviño C, Vásquez GM, López-Sifuentes VM, Escobedo-VargasK, Huayanay-Repetto A, Linton YM, et al. Establishment of a free-mating,long-standing and highly productive laboratory colony of Anophelesdarlingi from the Peruvian Amazon. Malar J. 2015;14:227. https://doi.org/10.1186/s12936-015-0733-0
King AM, MacRae TH. Insect heat shock proteins during stress anddiapause. Annu Rev Entomol. 2015;60:59-75. https://doi.org/10.1146/annurev-ento-011613-162107
Zerebecki RA, Sorte CJ. Temperature tolerance and stress proteinsas mechanisms of invasive species success. PLoS One. 2011;6(4):e14806.https://doi.org/10.1371/journal.pone.0014806