2023, Number 1
<< Back Next >>
Rev Mex Med Forense 2023; 8 (1)
Molecular mechanisms of rabies virus infection to neurons
Vichi-Ramírez MM, Soriano-Correa C, Merino-Amador P, Barrientos-Salcedo C
Language: Spanish
References: 43
Page: 178-193
PDF size: 542.22 Kb.
ABSTRACT
Lyssavirus rabies virus, commonly called rabies virus, is highly neurotropic and lethal in mammals. It causes Rabies disease, which has an important impact on public health. Nevertheless, there are few articles that describe the neural bases of aggressive behavior in patients infected with the rabies virus, which include alterations in serotonergic, cholinergic, GABAergic neurotransmission and voltage-dependent ion channels calcium. This review brings together specialized information on the infection mechanisms in the nervous system and its relationship with aggressive behavior induced by the rabies virus.
REFERENCES
Albertini A.A.V., Ruigrok R.W.H., Blondel D. (2011). Rabies virus transcription and replication. Advances in Virus Research, 79, 1–22. doi:10.1016/B978-0-12-387040-7.00001-9
Al-kassab-Córdova A., Cornejo-Venegas G., Ortiz-Alfaro C. (2019). La rabia: Aspectos epidemiológicos, mecanismos moleculares de la infección y prevención. Revista Experiencia En Medicina Del Hospital Regional Lambayeque, 5(3), 150–157. doi:10.37065/rem.v5i3.309
Berger M., Gray J.A., Roth B.L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355–366. doi:10.1146/annurev.med.60.042307.110802
Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Scheff S. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature, 367(6462), 455–459. doi:10.1038/367455a0
Davis B.M., Rall G.F., Schnell M.J. (2015). Everything you always wanted to know about rabies virus (but were afraid to ask). Annual Review of Virology, 2(1), 451–471. doi:10.1146/annurev-virology-100114-055157
Farahtaj F., Alizadeh L., Gholami A., Tahamtan A., Shirian S., Fazeli M., Ghaemi, A. (2019). Natural infection with rabies virus: A histopathological and immunohistochemical study of human brains. Osong Public Health and Research Perspectives, 10(1), 6–11. doi:10.24171/j.phrp.2019.10.1.03
Fisher C.R., Streicker D.G., Schnell M.J. (2018). The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews. Microbiology, 16(4), 241–255. doi:10.1038/nrmicro.2018.11
Fooks A.R., Cliquet F., Finke S., Freuling C., Hemachudha T., Mani R.S., Banyard A.C. (2017). Rabies. Nature Reviews. Disease Primers, 3, 17091. doi:10.1038/nrdp.2017.91
Holanda Duarte N.F., Alencar C.H., Pires Neto R. da J., Moreno J. de O., Araújo Melo I.M.L., Duarte B.H., Heukelbach J. (2021). Integration of human rabies surveillance and preventive measures in the State of Ceará, Northeast Brazil. One Health & Implementation Research. doi:10.20517/ohir.2021.02
Foster J.E., Mendoza J.A., Seetahal J. (2018) Viruses as Pathogens: Animal Viruses, With Emphasis on Human Viruses. En: P. Tennant, G. Fermin, J.E. Foster (Eds.), Viruses: Molecular Biology, Host Interactions and Applications to Biotechnology (pp. 157–87). San Diego, CA, USA: Elsevier.
Hueffer K., Khatri S., Rideout S., Harris M.B., Papke R.L., Stokes C., Schulte M.K. (2017). Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Scientific Reports, 7(1), 12818. doi:10.1038/s41598-017-12726-4
Iwata M., Unno T., Minamoto N., Ohashi H., Komori S. (2000). Rabies virus infection prevents the modulation by α2-adrenoceptors, but not muscarinic receptors, of Ca2+ channels in NG108-15 cells. European Journal of Pharmacology, 404(1–2), 79–88. doi:10.1016/s0014-2999(00)00621-x
Jackson AC. (2020). Pathogenesis. En AC Jackson (Ed). Rabies: scientific basis of the disease and its management pp. 303–45. San Diego, CA, USA: Elsevier.
Jackson AC. (2017). Rabies virus. En C. Coen, R. Dunbar, J. Morris, G. Goodwin, E. Mann, M. Hussein, J. Stein, E.T. Rolls, J. Taylor, V. Walsh, J. Stein (Eds.), The Curated Reference Collection in Neuroscience and Biobehavioral Psychology (pp. 1027–30). Oxford, UK: Elsevier.
Jackson A.C. (2016). Diabolical effects of rabies encephalitis. Journal of Neurovirology, 22(1), 8–13. doi:10.1007/s13365-015-0351-1
Jackson A.C., Kammouni W., Zherebitskaya E., Fernyhough P. (2010). Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. Journal of Virology, 84(9), 4697–4705. doi:10.1128/JVI.02654-09
Jonsson Fagerlund, M., Krupp, J., & Dabrowski, M. A. (2016). Propofol and AZD3043 inhibit adult muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Pharmaceuticals (Basel, Switzerland), 9(1), 8. doi:10.3390/ph9010008
Kalin N.H. (1999). Primate models to understand human aggression. The Journal of Clinical Psychiatry, 60 Suppl 15, 29–32.
Ladogana A., Bouzamondo E., Pocchiari M., Tsiang H. (1994). Modification of tritiated gamma-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. The Journal of General Virology, 75 (Pt 3) (3), 623–627. doi:10.1099/0022-1317-75-3-623
Lentz T.L., Burrage T.G., Smith A.L., Crick J., Tignor G.H. (1982). Is the acetylcholine receptor a rabies virus receptor? Science, 215(4529), 182–184. doi:10.1126/science.7053569
Li L., Jin H., Wang H., Cao Z., Feng N., Wang J., Xia X. (2017). Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains. Oncotarget, 8(13), 21336–21350. doi:10.18632/oncotarget.15184
Lippi G., Cervellin G. (2021). Updates on Rabies virus disease: is evolution toward “Zombie virus” a tangible threat? Acta Bio-Medica : Atenei Parmensis, 92(1), e2021045. doi:10.23750/abm.v92i1.9153
Ludlow M., Kortekaas J., Herden C., Hoffmann B., Tappe D., Trebst C., Osterhaus A.D.M.E. (2016). Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathologica, 131(2), 159–184. doi:10.1007/s00401-015-1511-3
Miller K.D., Schnell M.J., Rall G.F. (2016). Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nature Reviews. Neuroscience, 17(12), 766–776. doi:10.1038/nrn.2016.140
Ogino T., Green T.J. (2019). Transcriptional control and mRNA capping by the GDP polyribonucleotidyltransferase domain of the rabies virus large protein. Viruses, 11(6), 504. doi:10.3390/v11060504
Okumura A., Harty R.N. (2011). Rabies virus assembly and budding. Advances in Virus Research, 79, 23–32. doi:10.1016/B978-0-12-387040-7.00002-0
Oliveira R.N., Freire C.C., Iamarino A., Zanotto P.M., Pessoa R., Sanabani S.S., Brandão P.E. (2020). Rabies virus diversification in aerial and terrestrial mammals. Genetics and Molecular Biology, 43(3), e20190370. doi:10.1590/1678-4685-GMB-2019-0370
Ortega-Escobar J., Alcázar-Córcoles M.Á. (2016). Neurobiología de la agresión y la violencia. Anuario de psicología jurídica, 26(1), 60–69. doi:10.1016/j.apj.2016.03.001
Pan American Health Organization (PAHO). (2018). WHO expert consultation on rabies: third report. Recuperado de https://www.paho.org/en/documents/who-expert-consultation-rabies-third-report
Phoolcharoen W., Prehaud C., van Dolleweerd C.J., Both L., da Costa A., Lafon M., Ma J.K.-C. (2017). Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across anin celluloblood-brain barrier device. Plant Biotechnology Journal, 15(10), 1331–1339. doi:10.1111/pbi.12719
Piccinotti S., Kirchhausen T., Whelan S.P.J. (2013). Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. Journal of Virology, 87(21), 11637–11647. doi:10.1128/JVI.01648-13
World Health Organization (WHO). (2021). Rabies. Recuperado de https://www.who.int/news-room/fact-sheets/detail/rabies
Rajagopalan A., Jinu K.V., Sailesh K.S., Mishra S., Reddy U.K., Mukkadan J.K. (2017). Understanding the links between vestibular and limbic systems regulating emotions. Journal of Natural Science, Biology, and Medicine, 8(1), 11–15. doi:10.4103/0976-9668.198350
Riedel C., Hennrich A.A., Conzelmann K.-K. (2020). Components and architecture of the Rhabdovirus ribonucleoprotein complex. Viruses, 12(9), 959. doi:10.3390/v12090959
Riedel C., Vasishtan D., Pražák V., Ghanem A., Conzelmann K.-K., Rümenapf T. (2019). Cryo EM structure of the rabies virus ribonucleoprotein complex. Scientific Reports, 9(1), 9639. doi:10.1038/s41598-019-46126-7
Shuangshoti S., Thorner P.S., Teerapakpinyo C., Thepa N., Phukpattaranont P., Intarut N., Hemachudha T. (2016). Intracellular spread of rabies virus is reduced in the paralytic form of canine rabies compared to the furious form. PLoS Neglected Tropical Diseases, 10(6), e0004748. doi:10.1371/journal.pntd.0004748
Siever L.J. (2008). Neurobiology of aggression and violence. The American Journal of Psychiatry, 165(4), 429–442. doi:10.1176/appi.ajp.2008.07111774
Singh R., Singh K.P., Cherian S., Saminathan M., Kapoor S., Manjunatha Reddy G.B., Dhama K. (2017). Rabies – epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. The Veterinary Quarterly,37(1), 212–251. doi:10.1080/01652176.2017.1343516
Smart N.L., Charlton K.M. (1992). The distribution of Challenge virus standard rabies virus versus skunk street rabies virus in the brains of experimentally infected rabid skunks. Acta Neuropathologica, 84(5), 501–508. doi:10.1007/bf00304469
Thoulouze M.I., Lafage M., Schachner M., Hartmann U., Cremer H., Lafon M. (1998). The neural cell adhesion molecule is a receptor for rabies virus. Journal of Virology, 72(9), 7181–7190. doi:10.1128/JVI.72.9.7181-7190.1998
Tuffereau C., Bénéjean J., Blondel D., Kieffer B., Flamand A. (1998). Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. The EMBO Journal, 17(24), 7250–7259. doi:10.1093/emboj/17.24.7250
Walker P.J., Blasdell K.R., Calisher C.H., Dietzgen R.G., Kondo H., Kurath G. (2018). ICTV virus taxonomy profile: Rhabdoviridae. The Journal of General Virology, 99(4), 447–448. doi:10.1099/jgv.0.001020
Wunner WH, Conzelmann K-K. (2020). Rabies: scientific basis of the disease and its management. En AC Jackson (Ed). Rabies virus (pp. 17–60). San Diego, CA, USA: Elsevier.