2023, Number 4
<< Back Next >>
Rev Fac Med UNAM 2023; 66 (4)
The Role of Heat Shock Proteins in Viral Infections
Olvera-Sánchez S, Martínez F
Language: Spanish
References: 84
Page: 8-19
PDF size: 466.52 Kb.
ABSTRACT
Heat shock proteins (HSP) were first described as a cell response
to heat stress. However, over time, it has become
clear they have multiple functions inside and outside cells,
and that they actively participate in different physiological
and pathological processes. They perform functions related
to their cellular location or physiological moment, which is
why they have been called multi-use proteins or “moonlighting
proteins”. Furthermore, HSP activity is associated with
different structural conformations, from peptides derived
from them or as dimers or multimers, to mention a few. This
article describes these functions and their relationship with
the immune system, and their relationship with viral infection,
particularly with inflammatory processes.
REFERENCES
Richter K, Haslbeck M, Buchner J. The heat shock response:life on the verge of death. Molecular Cell. 2010;40(2):253-266.
Kampinga HH, Hageman J, Vos MJ, et al. Guidelines forthe nomenclature of the human heat shock proteins. CellStress Chaperones. 2009;14(1):105-111.
Chatterjee S, Burns TF. Targeting heat shock proteins incancer: A promising therapeutic approach. Int J Mol Sci.2017;18(9):1978.
Mogk A, Ruger-Herreros C, Bukau B. Cellular functionsand mechanisms of action of small heat shock proteins.Annu Rev Microbiol. 2019;73:89-110.
Zolkiewski M, Zhang T, Nagy M. Aggregate reactivationmediated by the Hsp100 chaperones. Arch Biochem Biophys.2012;520(1):1-6.
Jackson SE. Hsp90: structure and function. Top CurrChem. 2013;328:155-240.
Takakuwa JE, Nitika, Knighton LE, et al. Oligomerizationof Hsp70: Current perspectives on regulation andfunction. Front Mol Biosci. 2019;6:1-7.
Enriquez AS, Rojo HM, Bhatt JM, et al. The human mitochondrialHsp60 in the APO conformation forms a stabletetradecameric complex. Cell Cycle. 2017;16(13):1309-1319.
Caruso Bavisotto C, Alberti G, Vitale AM, et al. Hsp60Post-translational modifications: Functional and pathologicalconsequences. Front Mol Biosci. 2020;7:1-11.
Boelens WC. Structural aspects of the human small heatshock proteins related to their functional activities. CellStress Chaperones. 2020;25(4):581-591.
Collier MP, Moreira KB, Li KH, et al. Native mass spectrometryanalyses of chaperonin complex TRiC/CCTreveal subunit N-terminal processing and re-associationpatterns. Sci Rep. 2021;11(1):1-15.
Jeffery CJ. Protein moonlighting: what is it, and why isit important? Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):1-8.
Molvarec A, Tamási L, Losonczy G, et al. Circulating heatshock protein 70 (HSPA1A) in normal and pathologicalpregnancies. Cell Stress Chaperones. 2010;15(3):237-47.
Dvorakova L, Ivankova K, Krofta L, et al. Expressionprofile of heat shock proteins in placental tissues of patientswith preterm prelabor rupture of membranes andspontaneous preterm labor with intact membranes. Am JReprod Immunol. 2017;78(4):10.1111/aji.12698.
Monreal-Flores J, Espinosa-García MT, García-RegaladoA, et al. The heat shock protein 60 promotes progesteronesynthesis in mitochondria of JEG-3 cells. Reprod Biol.2017;17(2):154-161.
Olvera-Sanchez S, Espinosa-Garcia MT, Monreal J, et al.Mitochondrial heat shock protein participates in placentalsteroidogenesis. Placenta. 2011;32(3):222-229.
Hromadnikova I, Dvorakova L, Kotlabova K, et al. Circulatingheat shock protein mRNA profile in gestationalhypertension, pre-eclampsia & foetal growth restriction.Indian J Med Res. 2016;144(2):229-237.
Álvarez-Cabrera MC, Barrientos-Galeana E, Barrera-García A, et al. Secretion of heat shock -60, -70 kD protein,IL-1β and TNFα levels in serum of a term normalpregnancy and patients with pre-eclampsia development.J Cell Mol Med. 2018;22(11):5748-5752.
Yun CW, Kim HJ, Lim JH, et al. Heat shock proteins:Agents of cancer development and therapeutic targets inanti-cancer therapy. Cells. 2019;9(1):1-30.
Bellini S, Barutta F, Mastrocola R, et al. Heat shock proteinsin vascular diabetic complications: Review and futureperspective. Int J Mol Sci. 2017;18(12):2-26.
Skórzyńska-Dziduszko KE, Kimber-Trojnar Ż, Patro-Małysza J, et al. Heat shock proteins as a potential therapeutictarget in the treatment of gestational diabetes mellitus:what we know so far. Int J Mol Sci. 2018;19(10):1-14.
McCarty MF. Induction of heat shock proteins may combatinsulin resistance. Med Hypotheses. 2006;66(3):527-534.
Rodríguez-Iturbe B, Johnson RJ. Heat shock proteins andcardiovascular disease. Physiol Int. 2018;105(1):19-37.
Ranek MJ, Stachowski MJ, Kirk JA, et al. The role of heatshock proteins and co-chaperones in heart failure. PhilosTrans R Soc Lond B Biol Sci. 2018;373(1738):20160530.
Deniset JF, Pierce GN. Heat shock proteins: Mediatorsof atherosclerotic development. Curr Drug Targets. 2015;16(8):816-826.
Binder RJ. Heat shock protein vaccines: from bench tobedside. Int Rev Immunol. 2006;25(5-6):353-375.
Pockley AG, Henderson B. Extracellular cell stress (heatshock) proteins-immune responses and disease: an over-view. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160522.
Sedger L, Ruby J. Heat shock response to vaccinia virusinfection. J Virol. 1994;68(7):4685-4689.
De Maio A, Vazquez D. Extracellular heat shock proteins: anew location, a new function. Shock. 2013;40(4):239-246.
Reddy VS, Madala SK, Trinath J, et al. Extracellular smallheat shock proteins: exosomal biogenesis and function.Cell Stress Chaperones. 2018;23(3):441-454.
De Maio A. Extracellular heat shock proteins, cellular exportvesicles, and the Stress Observation System: a form ofcommunication during injury, infection, and cell damage.It is never known how far a controversial finding will go!Dedicated to Ferruccio Ritossa. Cell Stress Chaperones.2011;16(3):235-249.
Wells AD, Malkovsky M. Heat shock proteins, tumorimmunogenicity and antigen presentation: an integratedview. Immunol Today. 2000;21(3):129-132
Wallin RP, Lundqvist A, Moré SH, et al. Heat-shock proteinsas activators of the innate immune system. TrendsImmunol. 2002;23(3):130-135.
Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptoticcell death releases heat shock proteins, which delivera partial maturation signal to dendritic cells and activatethe NF-kappa B pathway. Int Immunol. 2000;12(11):1539-1546.
Quintana FJ, Solomon A, Cohen IR, et al. Induction ofIgG3 to LPS via Toll-like receptor 4 co-stimulation. PLoSOne. 2008;3(10):e3509.
Feng Z, Huang B, Zhang G, et al. Investigation on theeffect of peptides mixture from tumor cells inducing antitumorspecific immune response. Sci China C Life Sci.2002;45(4):361-369.
Pockley AG, Multhoff G. Cell stress proteins in extracellularfluids: friend or foe? Novartis Found Symp.2008;291:86-95;discussion 96-100,137-140.
Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulatescytokine production through a CD14-dependant pathway,demonstrating its dual role as a chaperone and cytokine.Nat Med. 2000;6(4):435-442.
Basta S, Stoessel R, Basler M, et al. Cross-presentation ofthe long-lived lymphocytic choriomeningitis virus nucleoproteindoes not require neosynthesis and is enhanced viaheat shock proteins. J Immunol. 2005;175(2):796-805.
Guo QY, Yuan M, Peng J, et al. Antitumor activity of mixedheat shock protein/peptide vaccine and cyclophosphamideplus interleukin-12 in mice sarcoma. J Exp ClinCancer Res. 2011;30(1):24.
McCarthy MK, Weinberg JB. The immunoproteasomeand viral infection: a complex regulator of inflammation.Front Microbiol. 2015:29;6-21.
Yamano T, Mizukami S, Murata S, et al. Hsp90-mediatedassembly of the 26 S proteasome is involved in major histocompatibilitycomplex class I antigen processing. J BiolChem. 2008;283(42):28060-28065.
Chen D, Androlewicz MJ. Heat shock protein 70 moderatelyenhances peptide binding and transport by thetransporter associated with antigen processing. ImmunolLett. 2001;75(2):143-148.
van Eden W. Immune tolerance therapies for autoimmunediseases based on heat shock protein T-cell epitopes. PhilosTrans R Soc Lond B Biol Sci. 2018;373(1738):20160531.
Prakken BJ, Samodal R, Le TD, et al. Epitope-specificimmunotherapy induces immune deviation of proinflammatoryT cells in rheumatoid arthritis. Proc Natl Acad SciU S A. 2004;101(12):4228-4233.
Koffeman EC, Genovese M, Amox D, et al. Epitopespecificimmunotherapy of rheumatoid arthritis: clinicalresponsiveness occurs with immune deviation and relies onthe expression of a cluster of molecules associated with Tcell tolerance in a double-blind, placebo-controlled, pilotphase II trial. Arthritis Rheum. 2009;60(11):3207-3216.
Wyżewski Z, Gregorczyk KP, Szczepanowska J, et al.Functional role of Hsp60 as a positive regulator of humanviral infection progression. Acta Virol. 2018;62(1):33-40.
Lubkowska A, Pluta W, Strońska A, et al. Role of heatshock proteins (HSP70 and HSP90) in viral infection.Int J Mol Sci. 2021;22(17):9366.
Vega VL, Rodríguez-Silva M, Frey T, et al. Hsp70 translocatesinto the plasma membrane after stress and is releasedinto the extracellular environment in a membraneassociatedform that activates macrophages. J Immunol.2008;180(6):4299-4307.
Vabulas RM, Ahmad-Nejad P, da Costa C, et al. EndocytosedHSP60s use toll-like receptor 2 (TLR2) andTLR4 to activate the toll/interleukin-1 receptor signalingpathway in innate immune cells. J Biol Chem. 2001;276(33):31332-31339.
Swaroop S, Mahadevan A, Shankar SK, et al. HSP60 criticallyregulates endogenous IL-1β production in activatedmicroglia by stimulating NLRP3 inflammasome pathway.J Neuroinflammation. 2018;15(1):317.
Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 regulationof tumor cell apoptosis. J Biol Chem. 2008;283(8):5188-5194.
Tanaka Y, Kanai F, Kawakami T, et al. Interaction of thehepatitis B virus X protein (HBx) with heat shock protein60 enhances HBx-mediated apoptosis. Biochem BiophysRes Commun. 2004;318(2):461-469.
Okamoto T, Nishimura Y, Ichimura T. Hepatitis C virusRNA replication is regulated by FKBP8 and Hsp90.EMBO J. 2006;25(20):5015-5025.
Batra J, Tripathi S, Kumar A, et al. Human Heat shockprotein 40 (Hsp40/DnaJB1) promotes influenza A virusreplication by assisting nuclear import of viral ribonucleoproteins.Sci Rep. 2016;6:19063.
Zaim S, Chong JH, Sankaranarayanan V, et al. COVID-19 and multiorgan response. Curr Probl Cardiol.2020;45(8):100618.
Arya R, Kumari S, Pandey B, Mistry H, et al. Structuralinsights into SARS-CoV-2 proteins. J Mol Biol.2021;433(2):166725.
Marino Gammazza A, Légaré S, Lo Bosco G, et al. Humanmolecular chaperones share with SARS-CoV-2 antigenicepitopes potentially capable of eliciting autoimmunity againstendothelial cells: possible role of molecular mimicry inCOVID-19. Cell Stress Chaperones. 2020;25(5):737-741.
Lucchese G, Flöel A. SARS-CoV-2 and Guillain-Barrésyndrome: molecular mimicry with human heat shockproteins as potential pathogenic mechanism. Cell StressChaperones. 2020;25(5):731-735.
Del Carmen Domínguez M, Cabrales A, Lorenzo N, et al.Biodistribution and pharmacokinetic profiles of an alteredpeptide ligand derived from heat-shock proteins 60 inLewis rats. Cell Stress Chaperones. 2020;25(1):133-140.
Hernandez-Cedeño M, Venegas-Rodriguez R, Peña-RuizR, et al. CIGB-258, a peptide derived from human heatshockprotein 60, decreases hyperinflammation in COVID-19 patients. Cell Stress Chaperones. 2021;26(3):515-525.
Qu B, Jia Y, Liu Y, et al. The detection and role of heatshock protein 70 in various nondisease conditions anddisease conditions: a literature review. Cell Stress Chaperones.2015;20(6):885-892.
Wan Q, Song D, Li H, et al. Stress proteins: the biologicalfunctions in virus infection, present and challenges fortarget-based antiviral drug development. Signal TransductTarget Ther. 2020;5(1):125.
Jakovac H. COVID-19 and hypertension: is the HSP60culprit for the severe course and worse outcome? Am JPhysiol Heart Circ Physiol. 2020;319(4):H793-H796.
Tian J, Guo X, Liu XM, et al. Extracellular HSP60 inducesinflammation through activating and up-regulating TLRsin cardiomyocytes. Cardiovasc Res. 2013;98(3):391-401.
Romagnoli S, Peris A, De Gaudio AR, et al. SARS-CoV-2and COVID-19: from the bench to the bedside. PhysiolRev. 2020;100(4):1455-1466.
Krause M, Keane K, Rodrigues-Krause J, et al. Elevatedlevels of extracellular heat-shock protein 72 (eHSP72) arepositively correlated with insulin resistance in vivo andcause pancreatic β-cell dysfunction and death in vitro.Clin Sci (Lond). 2014;126(10):739-752.
Chung J, Nguyen AK, Henstridge DC, et al. HSP72 protectsagainst obesity-induced insulin resistance. Proc NatlAcad Sci. 2008;105(5):1739-1744.
Rodrigues-Krause J, Krause M, O’Hagan C, et al. Divergenceof intracellular and extracellular HSP72 intype 2 diabetes: does fat matter? Cell Stress Chaperones.2012;17(3):293-302.
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmicreticulum (ER) chaperone BiP is a master regulator of ERfunctions: getting by with a little help from. ERdj friends.J Biol Chem. 2019;294:2098-2108.
Chu H, Chan CM, Zhang X, et al. Middle East respiratorysyndrome coronavirus and bat coronavirus HKU9 bothcan utilize GRP78 for attachment onto host cells. J BiolChem. 2018;293:11709-11726.
Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell’sresponse to stress. Life Sci. 2019;226:156-163.
Sabirli R, Koseler A, Goren T, et al. High GRP78 levelsin Covid-19 infection: A case-control study. Life Sci.2021;265:118781.
Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA.COVID-19 spike-host cell receptor GRP78 binding siteprediction. J Infect. 2020;80(5):554-562.
Ha DP, Van Krieken R, Carlos AJ, et al. The stress-induciblemolecular chaperone GRP78 as potential therapeutic targetfor coronavirus infection. J Infect. 2020;81(3):452-482.
Palmeira A, Sousa E, Köseler A, et al. Preliminary virtualscreening studies to identify GRP78 inhibitors which mayinterfere with SARS-CoV-2 infection. Pharmaceuticals(Basel). 2020;13(6):132.
Rayner JO, Roberts RA, Kim J et al. AR12 (OSU-03012)suppresses GRP78 expression and inhibits SARS-CoV-2replication. Biochem Pharmacol. 2020;182:114227.
Chen HW, Kuo HT, Wang SJ et al. In vivo heat shock proteinassembles with septic liver NF-kappaB/I-kappaB complexregulating NF-kappaB activity. Shock. 2005;24(3):232-238.
Zheng F, Liao C, Fan QH, et al. Clinical characteristics ofchildren with coronavirus disease 2019 in Hubei, China.Curr Med Sci. 2020;40(2):275-280.
Heck TG, Scomazzon SP, Nunes PR, et al. Acute exerciseboosts cell proliferation and the heat shock response inlymphocytes: correlation with cytokine production andextracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones.2017;22(2):271-291.
Li C, Chu H, Liu X, et al. Human coronavirus dependencyon host heat shock protein 90 reveals an antiviral target.Emerg Microbes Infect. 2020;9(1):2663-2672.
Kim JM, Lee DH, Kim JS, et al. 5,7-dihydroxy-3,4,6-trimethoxyflavone inhibits the inflammatory effects inducedby Bacteroides fragilis enterotoxin via dissociatingthe complex of heat shock protein 90 and I kappaB alphaand I kappaB kinase-gamma in intestinal epithelial cellculture. Clin Exp Immunol. 2009;155(3):541-551.
Geller R, Taguwa S, Frydman J. Broad action of Hsp90as a host chaperone required for viral replication. BiochimBiophys Acta. 2012;1823(3):698-706.
Wan Q, Song D, Li H, He ML. Stress proteins: the biologicalfunctions in virus infection, present and challenges fortarget-based antiviral drug development. Signal TransductTarget Ther. 2020;5(1):125.