2021, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2021; 40 (4)
Photographic imaging measurements of the foot as a non-invasive and valid methodology for clinical examination
Rodríguez-Alonso D, Fernández-Sánchez C, Benites SM
Language: Spanish
References: 25
Page: 1-10
PDF size: 265.73 Kb.
ABSTRACT
Introduction:
Musculoskeletal anatomical assessment by imaging in clinical examination of the foot is digital photography assessing surface morphology.
Objectives:
To validate the acquisition of photographic images of the foot, to calculate the longitudinal, angular and plantar arch index measurements of the above images using a podoscope and photogrammetry in healthy subjects and to categorize the normality of the measurements.
Methods:
This study was exploratory and was performed using a prototype camera around a podoscope and image analysis software. The photographic image was evaluated by longitudinal, angular and plantar index measurements.
Results:
The 30 healthy subjects evaluated had a mean age of 25.06 ± 11.95 years, females predominated with 53.3%. The mean total foot length, metatarsal width and instep height for the right side at 226 55 ± 36.49mm, 98.99 ± 22.71 mm, and 36.32 ± 4.07 mm respectively; and for the left side at 229.81 ± 42.25 mm, 104.49 ± 16.84mm and 36.31 ± 3.32mm respectively. The 1-2 ray intermetatarsal angle, 4-5 ray intermetatarsal angle and rearfoot angle for the right side were 14 ± 4º, 11 ± 3º and 2 ± 2º respectively; for the Left side 14 ± 3º, 9 ± 3º and 2 ± 2º respectively and the plantar index of the right and left arch were 0.23 ± 0.2 and 0.22 ± 0.1 respectively. Variability was only present in the forefoot at 20%.
Conclusions:
The photographic images of the foot were valid, the measurements were lower or similar to other studies. The variability of normality was only present in the forefoot.
REFERENCES
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98. Disponible en https://www.nature.com/articles/nrendo.2017.151
Bus SA, van Netten JJ, Lavery LA, Monteiro-Soares M, Rasmussen A, Jubiz Y. IWGDF guidance on the prevention of foot ulcers in at-risk patients with diabetes. Diabetes Metab Res Rev 2016;32(S1): 16-24.DOI: https://onlinelibrary.wiley.com/doi/10.1002/dmrr.2696
Hazenberg CEVB, Aan de Stegge WB, Van Baal SG, Moll FL, Bus SA. Telehealth and telemedicine applications for the diabetic foot: A systematic review. Diabetes Metab Res Rev. 2020 ; 36(3): 1-11. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079242/pdf/DMRR-36-e3247.pdf
Quinn, G. Normal genetic variation of the human foot: Part 2: Population variance, epigenetic mechanisms, and developmental constraint in function. J Am Podiatr Med Assoc 2012; 102(2): 149-56. Disponible en: https://meridian.allenpress.com/japma/article-abstract/102/2/149/183312/Normal-Genetic-Variation-of-the-Human-Foot-Part?redirectedFrom=fulltext
De Georgiev G. Significance of anatomical variations for clinical practice undefined. Int J Anat Var 2017; 10(3): 43-4. Disponible en: https://www.pulsus.com/scholarly-articles/significance-of-anatomical-variations-for-clinical-practice.pdf
Tomassoni D, Traini E, Amenta F. Gender and age-related differences in foot morphology. Maturitas 2014;79(4):421-7. Disponible en: https://www.maturitas.org/article/S0378-5122(14)00260-6/fulltext
Cooke SB, Terhune CE. Form, function, and geometric morphometrics. Anat Rec Hoboken 2017; (1): 5-28. DOI: https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.23065
Struck R, Cordoni S, Aliott S, Pérez-Pachón L, Gröning F. Application of Photogrammetry in Biomedical Science. In: Rea PM (eds.). Biomedical Visualisation, Springer International Publishing, Cham , 2019: 121-30. Disponible en: https://link.springer.com/chapter/10.1007%2F978-3-030-06070-1_10
Yadav S, Hossain MT, Shimmi S, Chaudhary B, Khan Digital Photography: An alternative for estimation of different dimensions of foot. Pharm Biol Eval 2015; 2: 60-3. Disponible en: https://www.academia.edu/14049675/Digital_Photography_An_alternative_for_estimation_of_different_dimensions_of_foot
O'Meara D, Vanwanseele B, Hunt A, Smith R. The reliability and validity of a three-camera foot image system for obtaining foot anthropometrics. J Appl Biomech 2010; 26(3): 349-56. Disponible en: https://www.academia.edu/14049675/Digital_Photography_An_alternative_for_estimation_of_different_dimensions_of_foot
Ashnagar Z, Reza Hadian M, Olyaei G, Talebian Moghadam S, Rezasoltani R, Saeedi H. Reliability of digital photography for assessing lower extremity alignment in individuals with flatfeet and normal feet types. J Bodyw Mov Ther 2013; 21(3): 704-10. Disponible en: https://www.bodyworkmovementtherapies.com/article/S1360-8592(16)30279-0/fulltext
Sacco ICN, Picon AP, Ribeiro AP, Sartor CD, Camargo-Junior F, Macedo DO: Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry. Braz J Med Biol Res 2012 ;45(9):806-10. Disponible en: https://www.scielo.br/j/bjmbr/a/Y5xkzg5tgRbPY9kNxCtN9nc/?lang=en
Nix S, Russell T, Vicenzino B, Smith M. Validity and reliability of hallux valgus angle measured on digital photographs. J Orthop Sports Phys Ther 2012 ;42(7):642-8. Disponible en: https://core.ac.uk/reader/10911356?utm_source=linkout
Fallat LM, Buckholz J. An analysis of the tailor's bunion by radiographic and anatomical display. J Am Podiatry Assoc 1980; 70: 597-603. DOI: https://doi.org/10.7547/87507315-70-12-597
Wong CK, Weil R, de Boer E. Standardizing foot-type classification using arch index values. Physiother Can 2012; 64(3): 280-3. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396578/pdf/ptc-64-280.pdf
Alazzawi S, Sukeik M, King D, Vemulapalli K. Foot and ankle history and clinical examination: A guide to everyday practice. World J Orthop 2017; 8(1): 21-29. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241541/pdf/WJO-8-21.pdf
Pohl MB, Farr LA. Comparison of foot arch measurement reliability using both digital photography and calliper methods. Journal of Foot and Ankle Research 2010; 3: 1-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914096/
Diniz KMA, de Oliveira Mascarenhas R, Freire R, Netto Bittencourt NF, De Michelis Mendonça L. Correlation between goniometric and photogrammetric assessment of shank-forefoot alignment in athletes. Foot 2020 (Edinb); 45: 1-25. DOI: https://doi.org/10.1016/j.foot.2020.101687
Cavanagh PR, Rodgers MM. The arch index: A useful measure from footprints. J Biomech 1987; 20(5): 547-51. DOI: https://doi.org/10.1016/0021-9290(87)90255-7
Zhao X, Tsujimoto T, Kim B, Katayama Y, Tanaka K. Characteristics of foot morphology and their relationship to gender, age, body mass index and bilateral asymmetry in Japanese adults. J Back Musculoskelet Rehabil 2017; 30(3): 527-35. Disponible en: https://content.iospress.com/articles/journal-of-back-and-musculoskeletal-rehabilitation/bmr150501
Paiva de Castro A, Rubens Rebelatto JR, Rabiatti Aurichio T. The Effect of Gender on Foot Anthropometrics in Older People. Journal of Sport Rehabilitation 2011; 20: 277-286. Disponible en: https://journals.humankinetics.com/view/journals/jsr/20/3/article-p277.xml
Hecht PJ, Lin TJ. Hallux valgus. Med Clin North Am 2014; 98(2): 227-32.DOI: https://doi.org/10.1016/j.mcna.2013.10.007
Bertrand T, Parekh SG. Bunionette deformity: etiology, nonsurgical management, and lateral exostectomy. Foot Ankle Clin 2011; 16(4): 679-88. DOI: https://doi.org/10.1016/j.fcl.2011.08.003
Shirzad K, Kiesau CD, DeOrio JK, Parekh SG. Lesser toe deformities. J Am Acad Orthop Surg 2011; 19(8): 505-14. Disponible en: https://journals.lww.com/jaaos/Fulltext/2011/08000/Lesser_Toe_Deformities.6.aspx
DiPreta JA. Metatarsalgia, lesser toe deformities, and associated disorders of the forefoot. Med Clin North Am 2014; 98(2): 233-51. DOI: https://doi.org/10.1016/j.mcna.2013.10.003