2021, Number 4
<< Back Next >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2021; 32 (4)
Knowledge graphs to manage epidemiological information about COVID-19
Delgado FT, Stuart CML, Delgado FM
Language: Spanish
References: 29
Page: 1-23
PDF size: 519.00 Kb.
ABSTRACT
Control of the spread of infectious diseases requires exhaustive epidemiological
research, as has been validated by the performance of the Ministry of Public Health
during several decades of combat against numerous diseases, such as dengue,
cholera and various types of influenza, among others. However, the COVID-19
pandemic is testing the limits of the most rigorous epidemiological protocols in
Cuba and worldwide, due to its high transmissibility and fast spread. In this
context, the present study had the purpose of using knowledge graphs to support
epidemiological research about COVID-19, with greater emphasis on exposure
factors and contact tracing. To achieve this end, a study was conducted about the
state of the art of knowledge graphs and their use in the health care sector,
particularly in the combat against the novel coronavirus SARS-CoV-2. The research
applied a methodological approach based on the development and use of
knowledge graphs adjusted to the study field. Results are simulated in the context
of the outbreak occurring in mid July 2020 in the municipality of Bauta, Artemisa
province, using real data obtained from the Internet and combined with other
simulated data.
REFERENCES
Delgado-Fernández T. Taxonomía de transformación digital. Rev CubanaTransform Dig. 2020 [12/08/2020];1(1):4-23. Disponible en:https://rctd.uic.cu/rctd/article/view/62
Noy N, Gao Y, Jain A, Narayanan A, Patterson A, Taylor J. Industry-scaleknowledge graphs: lessons and challenges. Queue. 2019;17(2):48-75. DOI:https://doi.org/10.1145/3331166
Paulheim H. Knowledge graph refinement: A survey of approaches andevaluation methods. Sem Web. 2017 [12/08/2020];8(3):489-508. Disponible en:http://www.semantic-web-journal.net/system/files/swj1167.pdf
Dirschl C, Kent J, Schram J, Reul Q. Enabling Digital Business Transformationthrough an enterprise Knowledge Graph. ESWC - Industry_Track; 2020[12/08/2020]. Disponible en: https://preprints.2020.eswcconferences.org/industry_track/paper_277.pdf
Heist N, Hertling S, Ringler D, Paulheim H. Knowledge Graphs on the Web-anOverview. arXiv preprint arXiv:2003.00719; 2020 [12/08/2020]. Disponible en:https://arxiv.org/abs/2003.00719
Ehrlinger L, Wöß W. Towards a Definition of Knowledge Graphs. SEMANTiCS;2016;48:1-4. Disponible en: https://www.semanticscholar.org/paper
Saorín T. Grafos de conocimiento y bases de datos en grafo: conceptosfundamentales a partir de una" obra maestra" del Museo del Prado. Anuario ThinkEPI; 2019.
Hogan A, Blomqvist E, Cochez M, d'Amato C, de Melo G, Gutiérrez C, Gayo JE,Kirrane S, Neumaier S, Polleres A, Navigli R. Knowledge graphs. arXiv Preprint;2020 [12/08/2020]. Disponible en: https://arxiv.org/abs/2003.02320
Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, HellmannS, Morsey M, Van Kleef P, Auer S, Bizer C. DBpedia–a large-scale, multilingualknowledge base extracted from Wikipedia. Sem Web; 2015[12/08/2020];6(2):167-95. Disponible en:https://content.iospress.com/articles/semantic-web/sw134
Kondreddi SK, Triantafillou P, Weikum G. Combining information extractionand human computing for crowdsourced knowledge acquisition. IEEE 30thInternational Conference on Data Engineering; 2014 [12/08/2020]. pp. 988-99.Disponible en: https://ieeexplore.ieee.org/abstract/document/6816717/
Grainger T, AlJadda K, Korayem M, Smith A. The Semantic Knowledge Graph:A compact, auto-generated model for real-time traversal and ranking of anyrelationship within a domain. IEEE International Conference on Data Science andAdvanced Analytics (DSAA); 2016.
Michel F, Gandon F, Ah-Kane V, Bobasheva A, Cabrio E, Corby O, Gazzotti R,et al. Covid-on-the-Web: Knowledge graph and services to advance COVID-19research. International Semantic Web Conference; 2020.
Mohamed A, Abuoda G, Ghanem A, Kaoudi Z, Aboulnaga A. RDF Frames:Knowledge Graph Access for Machine Learning Tools. arXiv:2002.03614v1; 2020.
Zou Y, Liu Y. The Implementation Knowledge Graph of Air Crash Data basedon Neo4j. IEEE 4th Information Technology, Networking, Electronic andAutomation Control Conference (ITNEC); 2020.
Tejero A, Rodríguez-Doncel V, Pau I. Knowledge Graphs for InnovationEcosystems. arXiv preprint; 2020 [12/08/2020]. Disponible en:https://arxiv.org/abs/2001.08615
Stuart-Cárdenas ML, Delgado-Fernández T, Delgado-Fernández M, Piedra Y.Datos empresariales enlazados: Revisión sistemática desde una perspectivaorganizacional. ALCANCE; 2020 [12/08/2020];9:23. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2411-99702020000200153
Galkin M, Auer S, Vidal ME, Scerri S. Enterprise Knowledge Graphs: ASemantic Approach for Knowledge Management in the Next Generation ofEnterprise Information Systems. ICEIS; 2017 [18/04/2017]:88-98. Disponible en:https://www.scitepress.org/Papers/2017/63252/63252.pdf
Bader SR, Grangel-González I, Nanjappa P, Vidal ME, Maleshkova M. AKnowledge Graph for Industry 4.0. European Semantic Web Conference;2020:465-80.
Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a healthknowledge graph from electronic medical records. Scient Rep. 2017;7(1):5994.DOI: https://doi.org/10.1038/s41598-017-05778-z
Gyrard A, Gaur M, Shekarpour S, Thirunarayan K, Sheth A. Personalizedhealth knowledge graph. Core Scholar Publications; 2018 [acceso: 28/07/2020].Disponible en: https://corescholar.libraries.wright.edu/
Yu T, Li J, Yu Q, Tian Y, Shun X, Xu L, Zhu L, Gao H. Knowledge graph forTCM health preservation: design, construction, and applications. ArtificialIntelligence in Medicine. 2017;77:48-52. DOI:https://doi.org/10.1016/j.artmed.2017.04.001
Domingo-Fernández D, Baksi S, Schultz B, Gadiya Y, Karki R, Raschka T, et al.COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effectknowledge model of COVID-19 pathophysiology. BioRxiv. 2020. DOI: https://doi.org/10.1101/2020.04.14.040667v1.full-text
Wang Q, Li M, Wang X, Parulian N, Han G, Ma J, et al. COVID-19 LiteratureKnowledge Graph Construction and Drug Repurposing Report Generation. arXivPreprint; 2007 [acceso: 01/07/2020]. Disponible en:https://arxiv.org/abs/2007.00576
Wise C, Ioannidis VN, Calvo MR, Song X, Price G, Kulkarni N, et al. COVID-19Knowledge Graph: Accelerating Information Retrieval and Discovery for ScientificLiterature. arXiv Preprint; 2007 [acceso: 24/07/2020]. Disponible en:https://arxiv.org/abs/2007.12731
Chen C, Ebeid IA, Bu Y, Ding Y. Coronavirus Knowledge Graph: A Case Study.arXiv Preprint; 2007 [acceso: 04/07/2020]. Disponible en:https://arxiv.org/abs/2007.10287
Ilievski F, Garijo D, Chalupsky H, Divvala NT, Yao Y, Rogers C, et al. KGTK: AToolkit for Large Knowledge Graph Manipulation and Analysis. arXiv Preprint;2006 [acceso: 29/05/2020]. Disponible en: https://arxiv.org/abs/2006.00088
Chen WJ, Yang SY, Chang JC, Cheng WC, Lu TP, Wang YN, et al. Developmentof a semi-structured, multifaceted, computer-aided questionnaire for outbreakinvestigation: e-Outbreak Platform. Biomed J. 2020 [acceso: 20/06/2020].Disponible en:https://www.sciencedirect.com/science/article/pii/S2319417020300949
Arruda N, Venceslau AD, da Cruz MM, Vidal VM, Pequeno VM. Publishing andConsuming Semantic Views for Construction of Knowledge Graphs. InICEIS; 2020[acceso: 20/06/2020];1:197-204. Disponible en:https://www.semanticscholar.org/paper/Publishing-and-Consuming-Semantic-Views-for-of-Arruda-Venceslau/3ddf6802b3eb40eac320ff34656ec23985166b40
Claveau V, L’Homme MC. Discovering specific semantic relationships betweennouns and verbs in a specialized French corpus. 3rd International Workshop onComputational Terminology; 2004.