2023, Number 2
<< Back Next >>
salud publica mex 2023; 65 (2)
Trypanosoma cruzi in Mexican Neotropical vectors and mammals: wildlife, livestock, pets, and human population
Izeta-Alberdi A, Pech-May A, Tun-Ku E, Mazariegos-Hidalgo CJ, López-Cancino SA, Gutiérrez S, Albino-Miranda S, de la Cruz-Felix K, Díaz-de la Cruz JM, Ibarra-Cerdeña CN, Arellano E, Ocampo MA, Vallejo RM, Ramsey JM
Language: English
References: 59
Page: 114-126
PDF size: 450.72 Kb.
ABSTRACT
Objective. To provide primary evidence of
Trypanosoma
cruzi landscape genetics in the Mexican Neotropics.
Materials
and methods. Trypanosoma cruzi and discrete
typing units (DTU) prevalence were analyzed in landscape
communities of vectors, wildlife, livestock, pets, and sympatric
human populations using endpoint PCR and sequencing of all
relevant amplicons from mitochondrial (kDNA) and nuclear
(ME, 18S, 24Sα) gene markers.
Results. Although 98% of
the infected sample-set (N=2 963) contained single or mixed
infections of DTUI (TcI, 96.2%) and TcVI (22.6%), TcIV and
TcII were also identified. Sensitivity of individual markers
varied and was dependent on host taxon; kDNA, ME and 18S
combined identified 95% of infections. ME genotyped 90% of
vector infections, but 60% of mammals (36% wildlife), while
neither 18S nor 24Sα typed more than 20% of mammal infec-
tions.
Conclusion. Available gene fragments to identify or
genotype
T. cruzi are not universally sensitive for all landscape
parasite populations, highlighting important
T. cruzi heterogeneity
among mammal reservoir taxa and triatomine species.
REFERENCES
Noireau F, Diosque P, Jansen AM. Trypanosoma cruzi: Adaptation to itsvectors and its hosts. Vet Research. 2009;40:26. https://doi.org/10.1051/vetres/2009009
Izeta-Alberdi A, Ibarra-Cerdeña CN, Moo-Llanes DA, Ramsey JM.Geographical, landscape and host associations of Trypanosoma cruzi DTUsand lineages. Parasite Vector. 2016;9:1-20. https://doi.org/10.1186/s13071-016-1918-2
Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH,Messias-Reason IJ, Lucas-Sandri T. Chagas Disease: From Discovery to aWorldwide Health Problem. Front Public Health. 2019;7:166. https://doi.org/10.3389/fpubh.2019.00166
World Health Organization. Chagas disease in Latin America: anepidemiological update based on 2010 estimates. Wkly Epidemiol Rec.2015;6:33-44.
Ibáñez-Cervantes G, Martínez-Ibarra A, Nogueda-Torres B, López-OrduñaE, Alonso AL, Perea C, et al. Identification by Q-PCR of Trypanosomacruzi lineage and determination of blood meal sources in triatominegut samples in México. Parasitol Int. 2013;62(1):36-43. https://doi.org/10.1016/j.parint.2012.09.003
López-Cancino SA, Tun-Ku E, De la Cruz-Felix HK, Ibarra-Cerdena CN,Izeta-Alberdi A, Pech-May A, et al. Landscape ecology of Trypanosoma cruziin the southern Yucatan Peninsula. Acta Trop. 2015;151:58-72. https://doi.org/10.1016/j.actatropica.2015.07.021
Ramos-Ligonio A, Torres-Montero J, López-Monteon A, Dumonteil E.Extensive diversity of Trypanosoma cruzi discrete typing units circulatingin Triatoma dimidiata from central Veracruz, Mexico. Infect Genet Evol.2012;12:1341-3. https://doi.org/10.1016/j.meegid.2012.04.024
Ramsey JM, Gutiérrez-Cabrera AE, Salgado-Ramírez L, Peterson AT,Sánchez-Cordero V, Ibarra-Cerdeña CN. Ecological Connectivity ofTrypanosoma cruzi Reservoirs and Triatoma pallidipennis Hosts in anAnthropogenic Landscape with Endemic Chagas Disease. PLoS One.2012;7:e46013. https://doi.org/10.1371/journal.pone.0046013
Tamay-Segovia P, Alejandre-Aguilar R, Martínez F, Villalobos G, Zavala-Díaz De La Serna FJ, De La Torre P, et al. Two Triatoma dimidiata clades(chagas disease vector) associated with different habitats in SouthernMexico and Central America. Am J Trop Med Hyg. 2008;78:472-8. https://doi.org/10.4269/ajtmh.2008.78.472
Zumaya-Estrada FA, Messenger LA, Lopez-Ordonez T, Lewis MD,Flores-Lopez CA, Martínez-Ibarra AJ, et al. North American import?Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype.Parasite Vector. 2012;5:226. https://doi.org/10.1186/1756-3305-5-226
Martínez-Hernández F, Rendon-Franco E, Gama-Campillo LM, Villanueva-García C, Romero-Valdovinos M, Maravilla P, et al. Follow up of naturalinfection with Trypanosoma cruzi in two mammals species, Nasua naricaand Procyon lotor (Carnivora: Procyonidae): Evidence of infection control?Parasite Vectors. 2014;7:405. https://doi.org/10.1186/1756-3305-7-405
Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, et al.Multiplex real-time PCR assay using TaqMan Probes for the Identificationof Trypanosoma cruzi DTUs in biological and clinical samples. PLoS NeglTrop Dis. 2015;9:e0003765. https://doi.org/10.1371/journal.pntd.0003765
Martínez I, Nogueda B, Martínez-Hernández F, Espinoza B. Microsatelliteand Mini-Exon analysis of Mexican human DTU I Trypanosoma cruzistrains and their susceptibility to nifurtimox and benznidazole. Vector-Borne Zoonotic Dis. 2013;13:181-7. https://doi.org/10.1089/vbz.2012.1072
Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, TeixeiraMMG, et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale,epidemiological relevance and research applications. Infect GenetEvol. 2012;12:240-53. https://doi.org/10.1016/j.meegid.2011.12.009
Margioto Teston AP, Paula de Abreu A, Gruendling AP, Bahia MT, GomesML, Marques de Araújo S, et al. Differential parasitological, molecular,and serological detection of Trypanosoma cruzi I, II, and IV in blood ofexperimentally infected mice. Exp Parasitol. 2016;166:44-50. https://doi.org/10.1016/j.exppara.2016.03.013
Britto CC. Usefulness of PCR-based assays to assess drug efficacy inChagas disease chemotherapy: Value and limitations. Mem Inst OswaldoCruz. 2009;104(suppl 1):122-35. https://doi.org/10.1590/S0074-02762009000900018
Schijman AG, Bisio M, Orellana L, Sued M, Duffy T, Mejia-Jaramillo AM,et al. International study to evaluate PCR methods for detection of Trypanosomacruzi DNA in blood samples from Chagas disease patients. PLoSNegl Trop Dis. 2011;5. https://doi.org/10.1371/journal.pntd.0000931
Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA.Flow cytometric analysis and microsatellite genotyping reveal extensiveDNA content variation in Trypanosoma cruzi populations and exposecontrasts between natural and experimental hybrids. Int J Parasitol.2009;39:1305-17. https://doi.org/10.1016/j.ijpara.2009.04.001
Rusman F, Tomasini N, Yapur N-F, Puebla AF, Ragone PG, Diosque P.Elucidating diversity in the class composition of the minicircle hypervariableregion of Trypanosoma cruzi: New perspectives on typing andkDNA inheritance. PLoS Negl Trop Dis. 2019;13:e0007536. https://doi.org/10.1371/journal.pntd.0007536
Fernandes O, Souto RP, Castro JA, Pereira JB, Fernandes NC, JunqueiraACV, et al. Brazilian isolates of Trypanosoma cruzi from humans and triatominesclassified into two lineages using mini-exon and ribosomal RNAsequences. Am J Trop Med Hyg. 1998;58:807-11. https://doi.org/10.4269/ajtmh.1998.58.807
Falla A, Herrera C, Fajardo A, Montilla M, Vallejo GA, Guhl F. Haplotypeidentification within Trypanosoma cruzi I in Colombian isolates fromseveral reservoirs, vectors and humans. Acta Trop. 2009;110:15-21. https://doi.org/10.1016/j.actatropica.2008.12.003
Maia Da Silva F, Noyes H, Campaner M, Junqueira ACV, Coura JR, AñezN, et al. Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolatesfrom man, triatomines and sylvatic mammals from widespread geographicalorigin based on SSU and ITS ribosomal sequences. Parasitology.2004;129:549-61. https://doi.org/10.1017/S0031182004005931
Noyes HA, Stevens JR, Teixeira M, Phelan J, Holz P. A nested PCRfor the ssrRNA gene detects Trypanosoma binneyi in the platypus andTrypanosoma sp. in wombats and kangaroos in Australia. Int J Parasitol.1999;29:331-9. https://doi.org/10.1016/S0020-7519(98)00167-2
Souto RP, Zingales B. Sensitive detection and strain classificationof Trypanosoma cruzi by amplification of a ribosomal RNA sequence.Mol Biochem Parasitol. 1993;62:45-52. https://doi.org/10.1016/0166-6851(93)90176-X
Sturm NR, Degrave W, Morel C, Simpson L. Sensitive detection andschizodeme classification of Trypanosoma cruzi cells by amplification ofkinetoplast minicircle DNA sequences: use in diagnosis of Chagas’ disease.Mol Biochem Parasitol. 1989;33:205-14. https://doi.org/10.1016/0166-6851(89)90082-0
Charles RA, Kjos S, Ellis AE, Barnes JC, Yabsley MJ. Southern plainswoodrats (Neotoma micropus) from Southern Texas are important reservoirsof two genotypes of Trypanosoma cruzi and host of a putative novelTrypanosoma species. Vector-Borne Zoonotic Dis. 2013;13:22-30. https://doi.org/10.1089/vbz.2011.0817
Herrera CP, Licon MH, Nation CS, Jameson SB, Wesson DM. Genotypediversity of Trypanosoma cruzi in small rodents and Triatoma sanguisugafrom a rural area in New Orleans, Louisiana. Parasite Vector. 2015;8.https://doi.org/10.1186/s13071-015-0730-8
Vandermark C, Zieman E, Boyles E, Nielsen CK, Davis C, AgustínJiménez F. Trypanosoma cruzi strain TcIV infects raccoons from Illinois.Mem Inst Oswaldo Cruz. 2018;113:30-7. https://doi.org/10.1590/0074-02760170230
Maiguashca-Sánchez J, Sueto SOB, Schwabl P, Grijalva MJ, Llewellyn MS,Costales JA. Remarkable genetic diversity of Trypanosoma cruzi and Trypanosomarangeli in two localities of southern Ecuador identified via deepsequencing of mini-exon gene amplicons. Parasite Vector. 2020;13:252.https://doi.org/10.1186/s13071-020-04079-1
Bontempi IA, Bizai ML, Ortiz S, Manattini S, Fabbro D, Solari A, et al.Simple methodology to directly genotype Trypanosoma cruzi discrete typingunits in single and mixed infections from human blood samples. InfectGenet Evol. 2016;43:123-9. https://doi.org/10.1016/j.meegid.2016.05.026
Bosseno MF, Telleria J, Vargas F, Yaksic N, Noireau F, Morin A, et al.Trypanosoma cruzi: Study of the distribution of two widespread clonalgenotypes in Bolivian Triatoma infestans vectors shows a high frequency ofmixed infections. Exp Parasitol. 1996;83:275-82. https://doi.org/10.1006/expr.1996.0075
Yeo M, Lewis MD, Carrasco HJ, Acosta N, Llewellyn M, da Silva ValenteSA, et al. Resolution of multiclonal infections of Trypanosoma cruzi fromnaturally infected triatomine bugs and from experimentally infected miceby direct plating on a sensitive solid medium. Int J Parasitol. 2007;37:111-20. https://doi.org/10.1016/j.ijpara.2006.08.002
Poveda C, Higuera A, Urbano P, Ramírez JD. Ecology of Trypanosomacruzi I genotypes across Rhodnius prolixus captured in Attalea butyracea palms. Infect Genet Evol. 2017;49:146-50. https://doi.org/10.1016/j.meegid.2017.01.017
Sikes RS, Gannon WL. Guidelines of the American Society of Mammalogistsfor the use of wild mammals in research animal care anduse committee 1 of the american society of mammalogists. J Mammal.2011;92:235-53. https://doi.org/10.1644/10-MAMM-F-355.1
Izeta-Alberdi A, Pech-May A, Tun-Ku E, Mazariegos-Hidalgo CJ, López-Cancino SA, Gutiérrez S, et al. Trypanosoma cruzi in Mexican Neotropicalvectors and mammals: wildlife, livestock, pets, and human population.Dryad, 2022. https://doi.org/10.5061/dryad.kh1893294
Pech-May A, Mazariegos-Hidalgo CJ, Izeta-Alberdi A, López-CancinoSA, Tun-Ku E, de la Cruz-Félix K, et al. Genetic variation and phylogeographyof the Triatoma dimidiata complex evidence a potential center oforigin and recent divergence of haplogroups having differential Trypanosomacruzi and DTU infections. PLoS Negl Trop Dis. 2019;13:1:e0007044.https://doi.org/10.1371/journal.pntd.0007044
Ramsey JM, Townsend-Peterson A, Carmona-Castro O, Moo-LlanesDA, Nakazawa Y, Butrick M, et al. Atlas of Mexican Triatominae (Reduviidae:Hemiptera) and vector transmission of Chagas disease. Mem Inst OswaldoCruz. 2015;110:339-52. https://doi.org/10.1590/0074-02760140404
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratorymanual. New York: Cold Spring Harbor Laboratory Press, 1989.
Mota J, Chacon JC, Gutiérrez-Cabrera AE, Sánchez-Cordero V, WirtzRA, Ordoñez R, et al. Identification of blood meal source and infectionwith Trypanosoma cruzi of Chagas disease vectors using a multiplex cytochromeb polymerase chain reaction assay. Vector-Borne Zoonotic Dis.2007;7:617-27. https://doi.org/10.1089/vbz.2007.0106
Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B. DNAmarkers define two major phylogenetic lineages of Trypanosoma cruzi.Mol Biochem Parasitol. 1996;83:141-52. https://doi.org/10.1016/s0166-6851(96)02755-7
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecularevolutionary genetics analysis across computing platforms. Mol Biol Evol.2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
Brisse S, Verhoef J, Tibayrenc M. Characterisation of large and smallsubunit rRNA and mini-exon genes further supports the distinction ofsix Trypanosoma cruzi lineages. Int J Parasitol. 2001;31:1218-26. https://doi.org/10.1016/S0020-7519(01)00238-7
Segatto M, Rodrigues CM, Machado CR, Franco GR, Pena SDJ, MacedoAM. LSSP-PCR of Trypanosoma cruzi: How the single primer sequenceaffects the kDNA signature. BMC Res Notes. 2013;6:1. https://doi.org/10.1186%2F1756-0500-6-174
Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledón R, CampbellDA, et al. Trypanosomatid biodiversity in Costa Rica: Genotyping ofparasites from Heteroptera using the spliced leader RNA gene. Parasitology.2004;129:537-47. https://doi.org/10.1017/S003118200400592X
Elias MCQB, Vargas NS, Zingales B, Schenkman S. Organization ofsatellite DNA in the genome of Trypanosoma cruzi. Mol Biochem Parasitol.2003;129:1-9. https://doi.org/10.1016/S0166-6851(03)00054-9
Callejas-Hernandez F, Herreros-Cabello A, del Moral-Salmoral J, FresnoM, Gironès N. The Complete Mitochondrial DNA of Trypanosoma cruzi:Maxicircles and Minicircles. Front. Cell. Infect. Microbiol. 2021;11: 672448.https://doi.org/10.3389/fcimb.2021.672448
Brisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosomacruzi lineages by sequence-characterised amplified region markers. MolBiochem Parasitol. 2000;111:95-105. https://doi.org/10.1016/s0166-6851(00)00302-9
Taylor MC, Ward A, Olmo F, Jayawardhana S, Francisco AF, Lewis MD, etal. Intracellular DNA replication and differentiation of Trypanosoma cruzi isasynchronous within individual host cells in vivo at all stages of infection.PLoS Negl Trop Dis. 2020;14:e0008007. https://doi.org/10.1371/journal.pntd.0008007
Ramírez JC, Cura CI, Da Cruz Moreira O, Lages-Silva E, Juiz N,Velázquez E, et al. Analytical validation of quantitative real-time PCRmethods for quantification of Trypanosoma cruzi DNA in blood samplesfrom chagas disease patients. J Mol Diagnostics. 2015;17:605-15. https://doi.org/10.1016/j.jmoldx.2015.04.010
Ibarra-Cerdeña CN, Valiente-Banuet L, Sánchez-Cordero V, StephensCR, Ramsey JM. Trypanosoma cruzi reservoir-triatomine vector co-occurrencenetworks reveal meta-community effects by synanthropic mammalson geographic dispersal. PeerJ. 2017;2017:e3152. https://doi.org/10.7717/peerj.3152
Lewis MD, Llewellyn MS, Yeo M, Acosta N, Gaunt MW, Miles MA. Recent,Independent and Anthropogenic Origins of Trypanosoma cruzi Hybrids. PLoSNegl Trop Dis. 2011;5:e1363. https://doi.org/10.1371/journal.pntd.0001363
Tomasini N, Diosque P. Evolution of Trypanosoma cruzi: clarifying hybridisations,mitochondrial introgressions and phylogenetic relationships betweenmajor lineages. Mem Inst Oswaldo Cruz, Rio de Janeiro. 2015;110(3): 403-13.https://doi.org/10.1590/0074-02760140401
Dorn PL, McClure AG, Gallaspy MD, Waleckx E, Woods AS, Monroy MC,et al. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting themain Central American vector, Triatoma dimidiata, from Mexico to Colombia.PLoS Negl Trop Dis. 2017;11. https://doi.org/10.1371/journal.pntd.0005878
Morrone JJ. Regionalización biogeográfica y evolución bióticade México: encrucijada de la biodiversidad del Nuevo Mundo. RevistaMexicana de Biodiversidad. 2019;90. https://doi.org/10.22201/ib.20078706e.2019.90.2980
Pedersen AB, Fenton A. Emphasizing the ecology in parasite communityecology. Trends Ecol Evol. 2007;22(3):133-9. https://doi.org/10.1016/j.tree.2006.11.005
Higo H, Miura S, Horio M, Mimori T, Hamano S, Agatsuma T, et al.Genotypic variation among lineages of Trypanosoma cruzi and its geographicaspects. Parasitol Int. 2004;53:337-44. https://doi.org/10.1016/j.parint.2004.06.001
Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S, Teh-Poot C, HerreraC, Gourbière S, et al. Detailed ecological associations of triatomines revealedby metabarcoding and next-generation sequencing: Implications fortriatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep.2018;8. https://doi.org/10.1038/s41598-018-22455-x
Hamilton PB, Lewis MD, Cruickshank C, Gaunt MW, Yeo M, LlewellynMS, et al. Identification and lineage genotyping of South American trypanosomesusing fluorescent fragment length barcoding. Infect Genet Evol.2011;11:44-51. https://doi.org/10.1016/j.meegid.2010.10.012
Gaur P, Chaturvedi A. Mining SNPs in extracellular vesicular transcriptomeof Trypanosoma cruzi: A step closer to early diagnosis of neglectedChagas disease. PeerJ. 2016;2016. https://doi.org/10.7717/peerj.2693