2023, Number 1
<< Back Next >>
Sal Jal 2023; 10 (1)
Astigmatism analysis of keratoconus with Scheimpflug corneal tomography
Rodríguez-López CE, Mora-González GF, Rendón-Félix J, Jáuregui-García GD, Mora-Jáuregui MF, García-Castro A, Ibáñez-Hernández MÁ
Language: Spanish
References: 16
Page: 31-39
PDF size: 258.17 Kb.
ABSTRACT
Introduction: keratoconus (KC) is multifactorial and progressive corneal affection with changing anatomic structures, and it is associated with anomalies in the corneal collagen. The corneal stroma is thinnest, resulting in a conic protuberance named KC. This modification of the corneal structure conditions myopia and irregular astigmatism, conducting to visual impairment.
Objective: compare corneal astigmatism using different measures of corneal refractive power obtained with Pentacam Scheimpflug corneal tomography (Oculus
®, Wetzlar, Germany) of eyes with keratoconus (KC), possible keratoconus (possible KC) and control group of eyes with regular corneal astigmatism.
Material and methods: this is a descriptive, observational and retrospective study. The sample was collected for convenience and corresponds to 149 eyes of 80 Mexican patients of both sexes, which underwent the Pentacam scan during 2020 in private ophthalmic consultation at Puerta de Hierro Medical in Zapopan, Jalisco, Mexico.
Results: our study showed that anterior corneal astigmatism (ACA) was higher in the keratoconus group than in the control group or possible KC. However there were no differences in astigmatism calculated with total corneal refractive power (TCRP) and Holladay report at 3 mm (HR 3 mm). Magnitude of astigmatism shows a direct linear correlation with topographic keratoconus classification (TKC) in all investigated corneal power measurement methods. With all the methods the steepest, the flattest and the mean keratometries in the KC group were significantly higher than those of the other groups. Based on the normal distribution we determined possible cut-off point to differentiate keratoconus from regular astigmatism.
Conclusions: taking into account the characteristics of KC in the Mexican population improves the precision of multiple clinical procedures performed in this population and sets a precedent for future prospective research.
REFERENCES
Loukovitis E, Kozeis N, Gatzioufas Z, et al. The proteins of keratoconus: a literature review exploring their contribution to the pathophysiology of the disease. Adv Ther. 2019;36:2205-2222. Available in: https://doi.org/10.1007/s12325-019-01026-0
Andreanos KD, Hashemi K, Petrelli M, Droutsas K, Georgalas I, Kymionis GD. Keratoconus treatment algorithm. Ophthalmol Ther. 2017;6(2):245-262. doi: 10.1007/s40123-017-0099-1.
Mas Tur V, MacGregor C, Jayaswal R, O'Brart D, Maycock N. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62(6):770-783. doi: 10.1016/j.survophthal.2017.06.009.
Khaled ML, Helwa I, Drewry M, Seremwe M, Estes A, Liu Y. Molecular and Histopathological Changes Associated with Keratoconus. Biomed Res Int. 2017;2017:7803029. doi: 10.1155/2017/7803029.
Kreps EO, Jimenez-Garcia M, Issarti I, Claerhout I, Koppen C, Rozema JJ. Repeatability of the pentacam HR in various grades of keratoconus. Am J Ophthalmol. 2020;219:154-162. doi: 10.1016/j.ajo.2020.06.013.
Tamaoki A, Kojima T, Hasegawa A, Nakamura H, Tanaka K, Ichikawa K. Intraocular lens power calculation in cases with posterior keratoconus. J Cataract Refract Surg. 2015;41(10):2190-2195. doi: 10.1016/j.jcrs.2015.11.001.
Ruiseñor Vázquez PR, Galletti JD, Minguez N, Delrivo M, Fuentes Bonthoux F, Pfortner T, Galletti JG. Pentacam Scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases. Am J Ophthalmol. 2014;158(1):32-40.e2. doi: 10.1016/j.ajo.2014.03.018.
Belin MW, Duncan JK. Keratoconus: The ABCD Grading System. Klin Monbl Augenheilkd. 2016;233(6):701-707. English. doi: 10.1055/s-0042-100626.
Ho JD, Tsai CY, Liou SW. Accuracy of corneal astigmatism estimation by neglecting the posterior corneal surface measurement. Am J Ophthalmol. 2009;147:788-795.
Ghiasian L, Abolfathzadeh N, Manafi N, Hadavandkhani A. Intraocular lens power calculation in keratoconus; a review of literature. J Curr Ophthalmol. 2019;31(2):127-134.
Goebels S, Eppig T, Wagenpfeil S, Cayless A, Seitz B, Langenbucher A. Staging of keratoconus indices regarding tomography, topography, and biomechanical measurements. Am J Ophthalmol. 2015;159(4):733-738. doi: 10.1016/j.ajo.2015.01.014.
Larrea J. Ramirez A. Navas A. Graue E. Jimenez A. Correlation of anterior and posterior corneal shape in clinical keratoconus. Invest. Ophthalmol. Vis. Sci. 2016;57(12):2902.
Savini G. Naeser K Schiano D. Mularoni A. Influence of posterior corneal astigmatism on total corneal astigmatism in eyes with keratoconus. Cornea. 2016;35:1427-1433. Doi: 10.1097/ICO.0000000000000920
Kim J, Whang WJ, Hyun SK. Analysis of total corneal astigmatism with a rotating Scheimpflug camera in keratoconus. BMC Ophthalmol. 2020;20:475. Available in: https://doi.org/10.1186/s12886-020-01747-9.
Kamiya K, Ishii R, Shimizu K, et al. Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler-Krumeich classification. Br J Ophthalmol. 2014;98(4):459-463. doi: 10.1136/bjophthalmol- 2013-304132.
Aslani F. Khorrami M. Aghazadeh M. Hashemian H. Askarizadeh F. Characteristics of posterior corneal astigmatism in different stages of keratoconus. J Ophthalmic Vis Res. 2018;13(1):3-9.