2023, Number 1
<< Back Next >>
Rev Educ Bioquimica 2023; 42 (1)
Desequilibrio en el sistema Renina-Angiotensina-Aldosterona causado por SARS-COV-2 y sus implicaciones fisiopatológicas
Acosta-Ramos E, Hernández-López LF, Olivares-Reyes JA
Language: Spanish
References: 110
Page: 12-32
PDF size: 987.10 Kb.
ABSTRACT
Coronavirus disease (COVID-19), which is caused by the severe acute
respiratory syndrome virus type 2 (SARS-CoV-2), was first detected in
late 2019 in Wuhan, China, and it was declared a pandemic by the World
Health Organization (WHO) in March 2020. As of September 2022, nearly
611 million confirmed cases of SARS-CoV-2 infection and about 6.5 million
deaths, caused mainly by cardio/respiratory complications, had been
reported in the world. The SARS-CoV-2 virus directly affects the reninangiotensin-
aldosterone system (RAAS) in its classical pathway by using
angiotensin-converting enzyme type 2 (ACE2) as a target site of invasion
through the viral S1 protein in the lungs. The complex ACE2/SARS-CoV-
2 produces a down-regulation on the production of angiotensin 1-7 (Ang
1-7), the main contra regulatory hormone of the RAAS system. The
decrease of Ang 1-7 leads to an increase in the angiotensin II/AT1
receptor (Ang II/AT1R) axis activity, which causes a systemic imbalance
of RAAS to promote inflammatory signaling and the risk of cardiovascular
and metabolic complications. In the present work, we will review the role
of RAAS in the development of SARS-CoV-2 infection and its
complications, mainly those associated with an exacerbated inflammatory
response, and cardiovascular and metabolic alterations. Likewise, the
main therapeutic strategies used to date to restore the balance of RAAS
will be discussed.
REFERENCES
Hunyady L, Catt KJ. Pleiotropic AT1 receptorsignaling pathways mediating physiologicaland pathogenic actions of angiotensin II.Molecular Endocrinology. 2006;20(5):953-70.
Ferrario CM, Strawn WB. Role of the Renin-Angiotensin-Aldosterone System and ProinflammatoryMediatorsinCardiovascular Disease. The American Journal of Cardiology. 2006;98(1):121-8.
Poznyak AV, Bharadwaj D, Prasad G,Grechko AV, Sazonova MA, Orekhov AN.Renin-Angiotensin System in Pathogenesisof Atherosclerosis and Treatment of CVD.International Journal of Molecular Sciences.2021;22(13):6702.
Afsar B, Afsar RE, Ertuglu LA, Kuwabara M,Ortiz A, Covic A, et al. Renin-angiotensinsystem and cancer: epidemiology, cellsignaling, genetics and epigenetics. ClinTransl Oncol. 2021;23(4):682-96.
Samavati L, Uhal BD. ACE2, Much MoreThan Just a Receptor for SARS-COV-2.Front Cell Infect Microbiol. 2020;10(317):1-9.
Ekholm M, Kahan T. The Impact of theRenin-Angiotensin-Aldosterone System onInflammation, Coagulation, andAtherothrombotic Complications, and toAggravated COVID-19. Frontiers inPharmacology. 2021;12(1534).
Holly JMP, Biernacka K, Maskell N, PerksCM.Obesity, Diabetes and COVID-19: AnInfectious Disease Spreading From the EastCollides With the Consequences of anUnhealthy Western Lifestyle. Frontiers inEndocrinology. 2020;11(665).
Sarzani R, Allevi M, Giulietti F, Di PentimaC, Re S, Giordano P, et al. The Identikit ofPatient at Risk for Severe COVID-19 andDeath: The Dysregulation of Renin-Angiotensin System as the CommonTheme. Journal of Clinical Medicine.2021;10(24):5883.
Beyerstedt S, Casaro EB, Rangel ÉB.COVID-19: angiotensin-converting enzyme2 (ACE2) expression and tissuesusceptibility to SARS-CoV-2 infection.European Journal of Clinical Microbiology &Infectious Diseases. 2021;40(5):905-19.
Skrbic R, Igic R. Seven decades ofangiotensin (1939–2009). Peptides.2009;30(10):1945-50.
Ocaranza MP, Riquelme JA, García L, JalilJE, Chiong M, Santos RAS, et al. Counter-regulatory renin–angiotensin system incardiovascular disease. Nature ReviewsCardiology. 2020;17(2):116-29.
Carey RM, Padia SH. Physiology andRegulation of the Renin–Angiotensin–Aldosterone System. In: Singh AK, WilliamsGH, editors. Textbook of Nephro-Endocrinology: Elsevier; 2018. p. 1-25.
Patel S, Rauf A, Khan H, Abu-Izneid T.Renin-angiotensin-aldosterone (RAAS): Theubiquitous system for homeostasis andpathologies. Biomedicine &Pharmacotherapy. 2017;94:317-25.
Forrester SJ, Booz GW, Sigmund CD,Coffman TM, Kawai T, Rizzo V, et al.Angiotensin II Signal Transduction: AnUpdate on Mechanisms of Physiology andPathophysiology. Physiological reviews.2018;98(3):1627-738.
Olivares-Reyes JA, Arellano-Plancarte A,Castillo-Hernandez JR. Angiotensin II andthe development of insulin resistance:Implications for diabetes. Molecular andCellular Endocrinology. 2009;302(2):128-39.
Bosnyak S, Jones S, Emma, ChristopoulosA, Aguilar M-I, Thomas G, Walter, WiddopE, Robert. Relative affinity of angiotensinpeptides and novel ligands at AT1 and AT2receptors. Clinical Science.2011;121(7):297-303.
Vear A, Gaspari T, Thompson P, Chai SY. IsThere an Interplay Between the FunctionalDomains of IRAP? Frontiers in Cell andDevelopmental Biology. 2020;8.
Donoghue M, Hsieh F, Baronas E, GodboutK, Gosselin M, Stagliano N, et al. A NovelAngiotensin-Converting Enzyme–RelatedCarboxypeptidase (ACE2) ConvertsAngiotensin I to Angiotensin 1-9. CirculationResearch. 2000;87(5):e1-e9.
Serhan N, Cenac N, Basso L, Gaudenzio N.Mas-related G protein-coupled receptors(Mrgprs) – Key regulators of neuroimmuneinteractions. Neuroscience Letters.2021;749:135724.
Patel VB, Zhong J-C, Grant MB, Oudit GY.Role of the ACE2/Angiotensin 1–7 Axis ofthe Renin–Angiotensin System in HeartFailure. Cir Res. 2016;118(8):1313-26.
Santos SHS, Andrade JMO. Angiotensin 1–7: A peptide for preventing and treatingmetabolic syndrome. Peptides.2014;59:34-41.
Chappell MC, Pirro NT, Sykes A, FerrarioCM.Metabolism of Angiotensin-(1–7) byAngiotensin-Converting Enzyme.Hypertension. 1998;31(1):362-7.
Deddish PA, Marcic B, Jackman HL, Wang H-Z, Skidgel RA, ErdöS EG. N-Domain–Specific Substrate and C-Domain Inhibitorsof Angiotensin-Converting Enzyme.Hypertension. 1998;31(4):912-7.
Paul M, Poyan Mehr A, Kreutz R. Physiologyof local renin-angiotensin systems.Physiological Reviews. 2006;86(3):747-803.
Nguyen G, Delarue F, Burcklé C, Bouzhir L,Giller T, Sraer J-D. Pivotal role of therenin/prorenin receptor in angiotensin IIproduction and cellular responses to renin.The Journal of Clinical Investigation.2002;109(11):1417-27.
Quadri SS, Cooper C, Ghaffar D, VaishnavH, Nahar L. The Pathological Role ofPro(Renin) Receptor in Renal Inflammation. Journal of Experimental Pharmacology. 2021;Volume 13:339-44.
Ramkumar N, Kohan DE. The (pro)reninreceptor: an emerging player inhypertension and metabolic syndrome.Kidney International. 2019;95(5):1041-52.
Shankar S, Kumar A, Patidar D, KanukuntlaS, Wig N. Renin-angiotensin system in thepathogenesis of COVID-19 and possibledrug targets. Journal of Primary CareSpecialties. 2021;2(2):33-7.
Nguyen G. Renin/prorenin receptors.Kidney International. 2006;69(9):1503-6.
Huang J, Siragy HM. Glucose Promotes theProduction of Interleukine-1β andCyclooxygenase-2 in Mesangial Cells viaEnhanced (Pro)Renin Receptor Expression.Endocrinology. 2009;150(12):5557-65.
Schefe JH, Menk M, Reinemund J, Effertz K,Hobbs RM, Pandolfi PP, et al. A Novel SignalTransduction Cascade Involving DirectPhysical Interaction of the Renin/ProreninReceptor With the Transcription FactorPromyelocytic Zinc Finger Protein.Circulation Research. 2006;99(12):1355-66.
Li W, Liu J, Hammond SL, Tjalkens RB,Saifudeen Z, Feng Y. Angiotensin IIregulates brain (pro)renin receptorexpression through activation of cAMPresponse element-binding protein.American Journal of Physiology-Regulatory,Integrative and Comparative Physiology.2015;309(2):R138-R47.
Rota PA. Characterization of a NovelCoronavirus Associated with Severe AcuteRespiratory Syndrome. Science.2003;300(5624):1394-9.
Holmes KV. SARS-Associated Coronavirus.N Engl J Med. 2003;348(20):1948-51.
Tali SHS, LeBlanc JJ, Sadiq Z, OyewunmiOD, Camargo C, Nikpour B, et al. Tools andTechniques for Severe Acute RespiratorySyndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev.2021;34(3):e00228-20.
Wehbe Z, Hammoud S, Soudani N, ZaraketH, El-Yazbi A, Eid AH. Molecular InsightsInto SARS COV-2 Interaction WithCardiovascular Disease: Role of RAAS andMAPK Signaling. Front Pharmacol.2020;11(836).
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK,Berne MA, et al. Angiotensin-convertingenzyme 2 is a functional receptor for theSARScoronavirus.Nature.2003;426(6965):450-4.
Badawi S, Ali BR. ACE2 Nascence,trafficking, and SARS-CoV-2 pathogenesis:the saga continues. Human Genomics.2021;15(1).
García-Escobar A, Vera-Vera S, Jurado-Román A, Jiménez-Valero S, Galeote G,Moreno R. Calcium Signaling Pathway IsInvolved in the Shedding of ACE2 CatalyticEctodomain: New Insights for Clinical andTherapeutic Applications of ACE2 forCOVID-19. Biomolecules. 2022;12(1):76.
Jia H. Pulmonary Angiotensin-ConvertingEnzyme 2 (ACE2) and Inflammatory LungDisease. Shock. 2016;46(3).
Imai Y, Kuba K, Rao S, Huan Y, Guo F, GuanB, et al. Angiotensin-converting enzyme 2protects from severe acute lung failure.Nature. 2005;436(7047):112-6.
Bártová E, Legartová S, Krejčí J,Arcidiacono OA. Cell differentiation andaging accompanied by depletion of theACE2 protein. Aging. 2020:22495-508.
Mahmudpour M, Roozbeh J, Keshavarz M,Farrokhi S, Nabipour I. COVID-19 cytokinestorm: The anger of inflammation.Cytokine. 2020;133:155151.
Jia HP, Look DC, Tan P, Shi L, Hickey M,Gakhar L, et al. Ectodomain shedding ofangiotensin converting enzyme 2 in humanairway epithelia. American Journal ofPhysiology-Lung Cellular and MolecularPhysiology. 2009;297(1):L84-L96.
Lambert DW, Yarski M, Warner FJ, ThornhillP, Parkin ET, Smith AI, et al. Tumor NecrosisFactor-α Convertase (ADAM17) MediatesRegulated Ectodomain Shedding of theSevere-acute Respiratory Syndrome-Coronavirus (SARS-CoV) Receptor, Angiotensin-converting Enzyme-2 (ACE2). Journal of Biological Chemistry. 2005;280(34):30113-9.
Pang J, Liu M, Ling W, Jin T. Friend or foe?ACE2 inhibitors and GLP-1R agonists inCOVID-19 treatment. Obes Med.2021;22:100312.
Úri K, Fagyas M, Mányiné Siket I, Kertész A,Csanádi Z, Sándorfi G, et al. NewPerspectives in the Renin-Angiotensin-Aldosterone System (RAAS) IV: CirculatingACE2 as a Biomarker of Systolic Dysfunctionin Human Hypertension and Heart Failure.PLoS ONE. 2014;9(4):e87845.
Huang Y, Yang C, Xu X-F, Xu W, Liu S-W.Structural and functional properties ofSARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica.2020;41(9):1141-9.
Heurich A, Hofmann-Winkler H, Gierer S,Liepold T, Jahn O, Pohlmann S. TMPRSS2and ADAM17 Cleave ACE2 Differentially andOnly Proteolysis by TMPRSS2 AugmentsEntry Driven by the Severe AcuteRespiratory Syndrome Coronavirus SpikeProtein. Journal of Virology.2014;88(2):1293-307.
Cesar-Silva D, Pereira-Dutra FS, MoraesGiannini ALM, Jacques G. De Almeida CJG.The Endolysosomal System: The Acid Testfor SARS-CoV-2. International Journal ofMolecular Sciences. 2022;23(9):4576.
Lu Y, Liu DX, Tam JP. Lipid rafts are involvedin SARS-CoV entry into Vero E6 cells.Biochem Biophys Res Commun.2008;369(2):344-9.
Bobkova NV. The Balance between TwoBranches of RAS Can Protect from SevereCOVID-19 Course. Biochem Suppl Ser AMembr Cell Biol. 2021;15(1):36-51.
Gheblawi M, Wang K, Viveiros A, Nguyen Q,Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20thAnniversary of the Discovery of ACE2. CircRes. 2020;126(10):1456-74.
Rezaei M, Ziai SA, Fakhri S, Pouriran R.ACE2: Its potential role and regulation insevere acute respiratory syndrome andCOVID‐19. Journal of Cellular Physiology.2021;236(4):2430-42.
Deshotels MR, Xia H, Sriramula S,Lazartigues E, Filipeanu CM. Angiotensin IIMediates Angiotensin Converting EnzymeType 2 Internalization and DegradationThrough an Angiotensin II Type I Receptor–Dependent Mechanism. Hypertension.2014;64(6):1368-75.
Guney C, Akar F. Epithelial and EndothelialExpressions of ACE2: SARS-CoV-2 EntryRoutes. Journal of Pharmacy &Pharmaceutical Sciences. 2021;24:84-93.
de Lang A, Osterhaus ADME, Haagmans BL.Interferon-γ and interleukin-4downregulate expression of the SARScoronavirus receptor ACE2 in Vero E6 cells.Virology. 2006;353(2):474-81.
Mallick B, Ghosh Z, Chakrabarti J.MicroRNome Analysis Unravels theMolecular Basis of SARS Infection inBronchoalveolar Stem Cells. PLoS ONE.2009;4(11):e7837.
Gu Q, Wang B, Zhang X-F, Ma Y-P, Liu J-D,Wang X-Z. Contribution of renin–angiotensin system to exercise-inducedattenuation of aortic remodeling andimprovement of endothelial function inspontaneously hypertensive rats.Cardiovascular Pathology. 2014;23(5):298-305.
Takahashi Y, Satoh M, Minami Y, Tabuchi T,Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-likereceptor 4 signal in coronary artery disease:effect of renin–angiotensin system blockadeand statins on miRNA-146a/b and Toll-likereceptor 4 levels. Clinical Science.2010;119(9):395-405.
Zhong JC, Ye JY, Jin HY, Yu X, Yu HM, ZhuDL, et al. Telmisartan attenuates aortichypertrophy in hypertensive rats by themodulation of ACE2 and profilin-1expression. Regul Pept. 2011;166(1-3):90-7.
Satoh M, Takahashi Y, Tabuchi T, TamadaM, Takahashi K, Itoh T, et al. CirculatingToll-like receptor 4-responsive microRNApanel in patients with coronary arterydisease: results from prospective andrandomized study of treatment with renin–angiotensin system blockade. ClinicalScience. 2014;128(8):483-91.
Gralinski LE, Sheahan TP, Morrison TE,Menachery VD, Jensen K, Leist SR, et al.Complement Activation Contributes toSevere Acute Respiratory SyndromeCoronavirus Pathogenesis. mBio.2018;9(5):e01753-18.
Wu F, Zhao S, Yu B, Chen Y-M, Wang W,Song Z-G, et al. A new coronavirusassociated with human respiratory diseasein China. Nature. 2020;579(7798):265-9.
Li S-W, Wang C-Y, Jou Y-J, Yang T-C, HuangS-H, Wan L, et al. SARS coronavirus papainlikeprotease induces Egr-1-dependent upregulationof TGF-β1 via ROS/p38MAPK/STAT3 pathway. Sci Rep.2016;6(1):25754.
Chen X, Yang X, Zheng Y, Yang Y, Xing Y,Chen Z. SARS coronavirus papain-likeprotease inhibits the type I interferonsignaling pathway through interaction withthe STING-TRAF3-TBK1 complex. Protein &cell. 2014;5(5):369-81.
Chang CY, Liu HM, Chang MF, Chang SC.Middle East Respiratory SyndromeCoronavirus Nucleocapsid ProteinSuppresses Type I and Type III InterferonInduction by Targeting RIG-I Signaling.Journal of virology. 2020;94(13).
DeDiego ML, Nieto-Torres JL, Regla-NavaJA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, et al. Inhibition of NFkappaB-mediated inflammation in severeacute respiratory syndrome coronavirusinfectedmice increases survival. Journal ofvirology. 2014;88(2):913-24.
Kuba K, Imai Y, Rao S, Gao H, Guo F, GuanB, et al. A crucial role of angiotensinconverting enzyme 2 (ACE2) in SARScoronavirus–induced lung injury. NatureMed. 2005;11(8):875-9.
Jamaluddin M, Meng T, Sun J, Boldogh I,Han Y, Brasier AR. Angiotensin II InducesNuclear Factor (NF)-κB1 Isoforms to Bindthe Angiotensinogen Gene Acute-PhaseResponse Element: A Stimulus-SpecificPathway for NF-κB Activation. Molecularendocrinology. 2000;14(1):99-113.
Mizutani T, Fukushi S, Saijo M, Kurane I,Morikawa S. Phosphorylation of p38 MAPKand its downstream targets in SARScoronavirus-infected cells. Biochem BiophysRes Commun. 2004;319(4):1228-34.
Skurk T, van Harmelen V, Hauner H.Angiotensin II stimulates the release ofinterleukin-6 and interleukin-8 fromcultured human adipocytes by activation ofNF-kappaB. Arterioscler Thromb Vasc Biol.2004;24(7):1199-203.
Zhang H. Angiotensin II-induced superoxideanion generation in human vascularendothelial cells Role of membrane-boundNADH-/NADPH-oxidases. Cardiovascularresearch. 1999;44(1):215-22.
He L, Ding Y, Zhang Q, Che X, He Y, ShenH, et al. Expression of elevated levels ofpro-inflammatory cytokines in SARS-CoVinfectedACE2+cells in SARS patients:relation to the acute lung injury andpathogenesis of SARS. J Pathol.2006;210(3):288-97.
Mehrabadi ME, Hemmati R, Tashakor A,Homaei A, Yousefzadeh M, Hemati K, et al.Induced dysregulation of ACE2 by SARSCoV-2 plays a key role in COVID-19severity. Biomedicine & Pharmacotherapy =Biomedecine & Pharmacotherapie.2021;137:111363.
Long B, Brady WJ, Koyfman A, Gottlieb M.Cardiovascular complications in COVID-19.Am J Emerg Med. 2020;38(7):1504-7.
Piątek Z, Gać P, Poręba M. The COVID-19pandemic, heart and cardiovasculardiseases: What we have learned. Dent MedProbl. 2021;58(2):219-27.
Nicin L, Abplanalp WT, Mellentin H, Kattih B,Tombor L, John D, et al. Cell type-specificexpression of the putative SARS-CoV-2receptor ACE2 in human hearts. EuropeanHeart Journal. 2020;41(19):1804-6.
Gencer S, Lacy M, Atzler D, Van Der VorstEPC, Döring Y, Weber C.Immunoinflammatory,Thrombohaemostatic, and CardiovascularMechanisms in COVID-19. Thrombosis andHaemostasis. 2020;120(12):1629-41.
Eguchi S, Kawai T, Scalia R, Rizzo V.Understanding Angiotensin II Type 1Receptor Signaling in VascularPathophysiology. Hypertension.2018;71(5):804-10.
Ohtsu H, Dempsey PJ, Frank GD, Brailoiu E,Higuchi S, Suzuki H, et al. ADAM17Mediates Epidermal Growth Factor ReceptorTransactivation and Vascular SmoothMuscle Cell Hypertrophy Induced byAngiotensin II. Arterioscler Thromb VascBiol. 2006;26(9):2208-.
Xiao X, Zhang C, Ma X, Miao H, Wang J, LiuL, et al. Angiotensin-(1–7) counteractsangiotensin II-induced dysfunction incerebral endothelial cells via modulatingNox2/ROS and PI3K/NO pathways.Experimental Cell Research.2015;336(1):58-65.
Finucane FM, Davenport C. Coronavirus andObesity: Could Insulin Resistance Mediatethe Severity of Covid-19 Infection? FrontPublic Health. 2020;8(184).
Srivastava P, Badhwar S, Chandran DS,Jaryal AK, Jyotsna VP, Deepak KK.Imbalance between Angiotensin II -Angiotensin (1-7) system is associated withvascular endothelial dysfunction andinflammation in type 2 diabetes with newlydiagnosed hypertension. Diabetes MetabSyndr: Clin Res Rev. 2019;13(3):2061-8.
Kassir R. Risk of COVID‐19 for patients withobesity. Obes Rev. 2020;21(6).
Bourgonje AR, Abdulle AE, Timens W,Hillebrands JL, Navis GJ, Gordijn SJ, et al.Angiotensin‐converting enzyme 2 (ACE2),SARS‐CoV‐2 and the pathophysiology ofcoronavirus disease 2019 (COVID‐19). JPathol. 2020;251(3):228-48.
Putnam K, Shoemaker R, Yiannikouris F,Cassis LA. The renin-angiotensin system: atarget of and contributor to dyslipidemias,altered glucose homeostasis, andhypertension of the metabolic syndrome.American Journal of Physiology Heart andCirculatory Physiology.2012;302(6):H1219-30.
Dorresteijn JA, Visseren FL, Spiering W.Mechanisms linking obesity tohypertension. Obes Rev. 2012;13(1):17-26.
Gutierrez-Rodelo C, Roura-Guiberna A,Olivares-Reyes JA. Molecular mechanismsof insulin resistance: an update. Gac MedMex. 2017;153(2):197-209.
Al-Benna S. Association of high level geneexpression of ACE2 in adipose tissue withmortality of COVID-19 infection in obesepatients. Obes Med. 2020;19:100283.
Govender N, Khaliq OP, Moodley J, NaickerT. Insulin resistance in COVID-19 anddiabetes. Primary Care Diabetes. 2021.
Von Lueder TG, Krum H. RAAS Inhibitorsand Cardiovascular Protection in LargeScale Trials. Cardiovascular drugs andtherapy / sponsored by the InternationalSociety of CardiovascularPharmacotherapy. 2013;27(2):171-9.
Spaccarotella C, Mazzitelli M, Migliarino S,Curcio A, De Rosa S, Torti C, et al. Therapywith RAS inhibitors during the COVID-19pandemic. J Cardiovasc Med.2021;22(5):329-34.
Ferrario CM, Jessup J, Chappell MC, AverillDB, Brosnihan KB, Tallant EA, et al. Effectof Angiotensin-Converting EnzymeInhibition and Angiotensin II ReceptorBlockers on Cardiac Angiotensin-ConvertingEnzyme 2. Circulation.2005;111(20):2605-10.
Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS):A spark that sets the forest alight? MedicalHypotheses. 2020;144:110231.
Clark Iii D, Guichard, Calhoun, Ahmed.Aldosterone receptor antagonists: currentperspectives and therapies. Vascular Healthand Risk Management. 2013;9:321-31.
Keidar S, Gamliel-Lazarovich A, Kaplan M,Pavlotzky E, Hamoud S, Hayek T, et al.Mineralocorticoid Receptor BlockerIncreases Angiotensin-Converting Enzyme2 Activity in Congestive Heart FailurePatients. Circ Res. 2005;97(9):946-53.
Lei C, Qian K, Li T, Zhang S, Fu W, Ding M,et al. Neutralization of SARS-CoV-2 spikepseudotyped virus by recombinant ACE2-Ig.Nat Commun. 2020;11(1):1-5.
Krishnamurthy S, Lockey RF, Kolliputi N.Soluble ACE2 as a potential therapy forCOVID-19. American Journal of Physiology-Cell Physiology. 2021;320(3):C279-C81.
Gul R, Kim U-H, Alfadda AA. Reninangiotensinsystem at the interface ofCOVID-19 infection. European Journal ofPharmacology. 2021;890:173656.
Zhang P, Zhu L, Cai J, Lei F, Qin J-J, Xie J,et al. Association of Inpatient Use ofAngiotensin-Converting Enzyme Inhibitorsand Angiotensin II Receptor Blockers WithMortality Among Patients With HypertensionHospitalized With COVID-19. Circ Res.2020;126(12):1671-81.
Teralı K, Baddal B, Gülcan HO. Prioritizingpotential ACE2 inhibitors in the COVID-19pandemic: Insights from a molecularmechanics-assisted structure-based virtualscreening experiment. Journal of MolecularGraphics and Modelling. 2020;100:107697.
Pinheiro SRVB, SimőEs E Silva AC, SampaioWO, De Paula RD, Mendes EP, BontempoED, et al. Nonpeptide AVE 0991 Is anAngiotensin-(1–7) Receptor Mas Agonist inthe Mouse Kidney. Hypertension.2004;44(4):490-6.
Povlsen A, Grimm D, Wehland M, InfangerM, Krüger M. The Vasoactive Mas Receptorin Essential Hypertension. Journal of ClinicalMedicine. 2020;9(1):267.
Ronchetti S, Migliorati G, Bruscoli S,Riccardi C. Defining the role ofglucocorticoids in inflammation. Clin Sci.2018;132(14):1529-43.
Braz-de-Melo HA, Faria SS, Pasquarelli-do-Nascimento G, Santos IdO, Kobinger GP,Magalhăes KG. The Use of the AnticoagulantHeparin and Corticosteroid Dexamethasoneas Prominent Treatments for COVID-19.Frontiers of Medicine. 2021;8(519):1-11.
Stockman LJ, Bellamy R, Garner P. SARS:Systematic Review of Treatment Effects.PLoS Med. 2006;3(9):e343.
Zhang Y, Hu S, Wang J, Xue Z, Wang C,Wang N. Dexamethasone inhibits SARSCoV-2 spike pseudotyped virus viropexis bybinding to ACE2. Virology. 2021;554:83-8.
Ranjbar K, Moghadami M, MirahmadizadehA, Fallahi MJ, Khaloo V, Shahriarirad R, etal. Methylprednisolone or dexamethasone,which one is superior corticosteroid in thetreatment of hospitalized COVID-19patients: a triple-blinded randomizedcontrolled trial. BMC Infectious Diseases.2021;21(1).
Group TRC. Dexamethasone in HospitalizedPatients with Covid-19. N Engl J Med.2021;384(8):693-704.