2022, Number 1
<< Back Next >>
Revista Mexicana de Trastornos Alimentarios 2022; 12 (1)
Artificial neural networks model: Neuropsychological variables and their relationship with body fat percentage in adults
Méndez-Peña BI, Murillo-Tovar MM, Leija-Alva G, Montufar BII, Serena-Alvarado A, Durán-Arciniega RS, Pérez-Vielma NM, Aguilera-Sosa VR
Language: English
References: 29
Page: 61-70
PDF size: 360.00 Kb.
ABSTRACT
There is a growing interest to understand the neural functions and substrates of complex cognitive
processes related to Obesity (OB). Artificial Intelligence (AI) is being applied, specifically the
perceptron model of Artificial Neural Networks (ANN) in non-communicable chronic diseases, to
identify with greater certainty the connective factors (synaptic networks) between the input variables
and the output variables associated.
Objective: Identify the synaptic weights of the ANN whose
input variables are the executive functions (EF) and healthy lifestyles as predictors of Body Fat
Percentage (BFP) in a group of adult subjects with different levels of BFP.
Methods: It was an
exploratory, quantitative, cross-sectional, comparative, convenience, and explanatory research. The
Neuropsychological Battery (BANFE-2) and the Overeating Questionnaire (OQ) were administered
to 40 participants aged between 18-38 years. BFP was measured using a RENPHO ES-24M Smart
Body Composition Scale. The perceptron ANN model with ten trials was applied with a multilayer-
perceptron.
Results: The ANN showed that the sensory variables with greater synaptic weight
for BFP were Stroop A and B Errors and Successes of BANFE-2, and OQ scales Rationalizations
and Healthy Habits.
Conclusions: ANN proved to be important in the simultaneous analysis of
neuropsychological and healthy lifestyle data for the analysis of OB prevention and treatment by
identifying the variables that are closely related. These findings open the door for the use of non-linear
analysis models, which allow the identification of relationships of different weights, between
input and output variables, to more effectively direct interventions to modify obesity habits.
REFERENCES
Adavi, M., Salehi, M. & Roudbari, M. (2016). Artificial neuralnetworks versus bivariate logistic regression in predictiondiagnosis of patients with hypertension and diabetes. Medicaljournal of the Islamic Republic of Iran, 30, 312.
Allan, J., McMinn, D. & Daly, M. (2016). A bidirectionalrelationship between executive function and health behavior:evidence, implications, and future directions.Frontiers in neuroscience, 10, 386.
Arias, V., Salazar, J., Garicano, C., Contreras, J., Chacón,G., Chacín-González, M. & Bermúdez-Pirela, V. (2019).Una introducción a las aplicaciones de la inteligenciaartificial en Medicina: Aspectos históricos. Revista Latinoamericanade Hipertensión, 14(5), 590-600.
Asociación Médica Mundial (2013). Declaración de Helsinkide la AMM: Principios éticos para las investigacionesmédicas en seres humanos.
Bajo, S. & Ballesteros, M. (2002). Redes neuronales: concepto,aplicaciones y utilidad en medicina. Atención primaria,30(2), 119.
Benelam, B. (2009). Satiation, satiety and their effects on eatingbehavior. Nutrition bulletin, 34(2), 126-173.
Brandan, N., Aguirre, M., Agolti, G. & Vila, M. (2014) Interrelacionesmetabólicas. Interrelaciones metabólicasentre tejidos especializados. Ciclo Ayuno-Alimentación.Interrelaciones metabólicas en estados fisiológicosy patológicos. Universidad Nacional del Nordeste Facultad deMedicina Cátedra de Bioquímica.
Calvo, D., Galioto, R., Gunstad, J. & Spitznagel, M. B.(2014). Uncontrolled eating is associated with reducedexecutive functioning. Clinical obesity, 4(3), 172-179.
Cardozo, L, Cuervo, & Murcia, J. (2016). Porcentaje degrasa corporal y prevalencia de sobrepeso-obesidad enestudiantes universitarios de rendimiento deportivo deBogotá, Colombia. Nutrición clínica y dietética hospitalaria,36(3), 68-75.
Carlson, N. (2014). Fisiología de la conducta (pp. 81-82). Madrid:Pearson.
Carbine, K. A., Christensen, E., LeCheminant, J. D., Bailey,B. W.Tucker, L. A. & Larson, M. J. (2017). Testingfood-related inhibitory control to high-and low-caloriefood stimuli: Electrophysiological responses to high-caloriefood stimuli predict calorie and carbohydrateintake. Psychophysiology, 54(7), 982-997.
Cherbuin, N. & Walsh, E. (2019). Sugar in mind: untanglinga sweet and sour relationship beyond type 2 diabetes.Frontiers in neuroendocrinology, 54, 100769.
Ergün U. (2009). The classification of obesity disease in logisticregression and neural network methods. Journal ofmedical systems, 33(1), 67–72.
García, F. & Espinosa, J. (2013). Estimation of body fat percentageusing neural networks. Revista vínculos, 10(1),308-318.
García-Flores, C., Martínez, A., Beltrán C., Zepeda-Salvador,A. & Solano, L. (2017). Saciación vs saciedad:reguladores del consumo alimentario. Revista médica deChile, 145(9), 1172-1178.
Golden, C. (2020) STROOP. Test de Colores y Palabras – EdiciónRevisada (6a ed.) TEA Ediciones.
Heydari, S. T., Ayatollahi, S. M., & Zare, N. (2012). Comparisonof artificial neural networks with logistic regressionfor detection of obesity. Journal of medical systems, 36(4),2449–2454.
Huang, T., Chen, Z., Shen, L., Fan, X. & Wang, K. (2019).Associations of Cognitive Function with BMI, Body FatMass and Visceral Fat in Young Adulthood. Medicina,55(6), 221.
Lubrini, G., Periañez, J. A. & Rios-Lago, M. (2009). Introduccióna la estimulación cognitiva y la rehabilitaciónneuropsicológica. Estimulación cognitiva y rehabilitación neuropsicológica,13-16.
Martínez-Mendoza, G. (2019). Funciones ejecutivas y consumode alcohol en jóvenes universitarios: capacidadpredictiva de las medidas de evaluación. Revista de PsicologíaClínica con Niños y Adolescentes, 6(2), 22-29.
Mármol, M., & Spano, R. (2018). Diferencias en el desempeñode las funciones ejecutivas en grupos de niños cony sin desnutrición de siete a diez años de La Vega, Antimanoy Carapita. Universidad Católica Andrés Bello, Facultadde Humanidades y Educación Escuela de Psicología. http://biblioteca2.ucab.edu.ve/anexos/biblioteca/marc/texto/AAT7115.pdf
Narimani, M., Esmaeilzadeh, S., Azevedo, L. B., Moradi,A., Heidari, B. & Kashfi-Moghadam, M. (2019). Associationbetween weight status and executive function inyoung adults. Medicina, 55(7), 363.Psihas, E. (2014). Validación del cuestionario de sobreingestaalimentaria en población mexicana. [online] Repositorio.iberopuebla.mx. Available at:
PSIHAS.pdf ?sequence=1> [Accessed 24 January2022].
Sarmiento-Ramos, J. (2020). Aplicaciones de las redes neuronalesy el deep learning a la ingeniería biomédica.Revista UIS Ingenierías, 19(4), 1-18.
Tirapu, J., García, A., Luna, P., Verdejo, A. & Ríos, M.(2012). Corteza prefrontal, funciones ejecutivas y regulaciónde la conducta. Neuropsicología de la corteza prefrontaly las funciones ejecutivas, 87-117.
Turban, E., Aronsons, J. E., & Ting-Peng, L. (2007) DecisionSupport and Business Intelligence Systems, 8th Edition. UnitedStates Pearson.
Tsai, C. L., Pan, C. Y., Chen, F. C., Huang, T. H., Tsai, M.C. & Chuang, C. Y. (2019). Differences in neurocognitiveperformance and metabolic and inflammatoryindices in male adults with obesity as a function of regularexercise. Experimental physiology, 104(11), 1650-1660.
World Health Organization. (2005). WHO STEPS surveillancemanual: the WHO STEPwise approach to chronic disease riskfactor surveillance (No. WHO/NMH/CHP/SIP/05.02).World Health Organization.
Yang, Y., Shields, G., Guo, C. & Liu, Y. (2018). Executivefunction performance in obesity and overweight individuals:A meta-analysis and review. Neuroscience &Biobehavioral Reviews, 84, 225-244.