2021, Number 3
Temporal model of the behavior of critically ill patients with COVID-19 during their staying in intensive care. Lombardy, Italy
Language: Spanish
References: 17
Page: 601-615
PDF size: 12236.30 Kb.
ABSTRACT
Introduction: a time series is the product of the observation of a variable in time. It is a mathematical tool frequently applied in health. No temporal models have been developed to predict patients’ behavior during their staying in the Intensive Care Unit.Objectives: to create a time series allowing to predict the behavior of seriously-ill patients due to COVID-19, during their staying in the Intensive Care Unit in the region of Lombardy, Italy.
Materials and methods: analytic, longitudinal prospective study with a group of critical patients who were admitted from April 1st to May 1st, with COVID-19 diagnosis, to Ospedale Maggiore di Crema, in the Lombardy region, Italy. The universe was formed by 28 patients and all of them were worked on.
Results: 48% of patients were male. Average age: 83 years; Time series: Model 1 holding PO2/FiO2 p = 0.251; Model 2 (ARIMA) SatO2/FiO2 p = 0.674 (in the two first models the result increased with the days, following a predictable behavior=; Model 3 (ARIMA) p = 0.406 (in this case the expected result decreased as time passed). The obtained functions allow to calculate the expected value according to the day from the admission.
Conclusions: predicting patient's evolution in the Intensive Care Unit allowed early detecting those with unexpected curves and targeting more aggressive therapies toward them.
REFERENCES
Pallarés Carratalá V, Górriz-Zambrano C, Morillas Ariño C, et al. COVID-19 y enfermedad cardiovascular y renal: ¿Dónde estamos? ¿Hacia dónde vamos? Medicina de Familia. Semergen [Internet]. 2020 [citado 23/06/2020];46(1):78-87. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1138359320301441?via%3Dihub
Medeiros Figueiredo A, Daponte-Codina A, Moreira Marculino D, et al. Factores asociados a la incidencia y la mortalidad por COVID-19 en las comunidades autónomas. Gac Sanit [Internet]. 2020 [citado 28/06/2020]. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/pii/S0213911120301242?via%3Dihub
Venegas Sosa AM, Cortés Munguía JA, Flores López EN, et al. Correlación entre PaO2/FiO2 versus SO2/FiO2 para monitoreo de oxigenación en pacientes con trauma de tórax. Col Mex Med Crít [Internet]. 2018 [citado 04/07/2020];32(4). Disponible en: Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-89092018000400201
Ameghino Bautista J, Morales Corbacho J, Apolaya-Segura M. Correlación entre SO2/FiO2 y PaO2/FiO2 en pacientes con insuficiencia respiratoria en ventilación mecánica. Rev Cubana de Invest Bioméd [Internet]. 2018 [citado 04/07/2020];37(3):1-9. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002018000300002