2023, Number 2
<< Back Next >>
Rev Mex Anest 2023; 46 (2)
Basic electroencephalography for anesthesia depth monitors
Hernández-González S, Perdomo-Perdomo MB, Sánchez-Gamarro R, Ávila-Fuentes S, Hernández-Rodríguez L, Fernández-García J
Language: Spanish
References: 47
Page: 125-132
PDF size: 446.85 Kb.
ABSTRACT
Anesthesia depth monitors allow to guide the patient's hypnotic state during general anesthesia. Traditionally, anesthetic depth indices have been used due to their simplicity to guide the monitoring of the level of consciousness. They have been obtained by processing the electroencephalogram using mathematical algorithms and their benefits have been widely reported in the scientific literature. However, they are not exempt from important limitations. Neither all anesthetics act on the same molecular targets, nor these mentioned indices take into account the patient's own characteristics (comorbidities, extreme ages, etc.). These limitations could be far reduced if we are able to understand all the information provided by the monitors. We present a review describing the basic concepts necessary for its direct assessment, as well as their correlation with the patient's anesthetic depth states.
REFERENCES
Berger H. Über das Elektrenkephalogramm des Menschen. Archiv f Psychiatrie. 1929;87:527-570. Available in: http://doi.org/10.1007/BF01797193
Gibbs FA. Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med. 1937;60:154. Available in:http://doi.org/10.1001/archinte.1937.00180010159012
Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology. 2000;93:1336-1344. Available in: http://doi.org/10.1097/00000542-200011000-00029
Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge JA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358:1097-1108. Available in:http://doi.org/10.1056/NEJMoa0707361
Avidan MS, Jacobsohn E, Glick D, Burnside BA, Zhang L, Villafranca A, et al. Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med. 2011;365:591-600. Available in: http://doi.org/10.1056/NEJMoa1100403
Dahaba AA. Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg. 2005;101:765-773. http://doi.org/10.1213/01.ane.0000167269.62966.af
Samarkandi A-H. The bispectral index system in pediatrics--is it related to the end-tidal concentration of inhalation anesthetics? Middle East J Anesthesiol. 2006;18:769-778.
Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. Variation of bispectral index under TIVA with propofol in a paediatric population. Br J Anaesth. 2008;100:82-87. Available in: http://doi.org/10.1093/bja/aem339
Arnold G, Kluger M, Voss L, Sleigh J. BIS and Entropy in the elderly. Anaesthesia. 2007;62:907-912. Available in: http://doi.org/10.1111/j.1365-2044.2007.05149.x
Lysakowski C, Elia N, Czarnetzki C, Dumont L, Haller G, Combescure C, et al. Bispectral and spectral entropy indices at propofol-induced loss of consciousness in young and elderly patients. Br J Anaesth. 2009;103:387-393. Available in: http://doi.org/10.1093/bja/aep162
Renna M, Handy J, Shah A. Low baseline Bispectral Index of the electroencephalogram in patients with dementia. Anesth Analg. 2003;96:1380-1385. Available in: http://doi.org/10.1213/01.ANE.0000059223.78879.0F
Hayashi K, Tsuda N, Sawa T, Hagihira S. Ketamine increases the frequency of electroencephalographic bicoherence peak on the alpha spindle area induced with propofol. Br J Anaesth. 2007;99:389-395. Available in: http://doi.org/10.1093/bja/aem175
Tsuda N, Hayashi K, Hagihira S, Sawa T. Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesiol Scand. 2007;51:472-481. Available in: http://doi.org/10.1111/j.1399-6576.2006.01246.x
Foster BL, Liley DTJ. Effects of nitrous oxide sedation on resting electroencephalogram topography. Clin Neurophysiol. 2013;124:417-423. Available in: http://doi.org/10.1016/j.clinph.2012.08.007
Hagihira S, Takashina M, Mori T, Mashimo T. The impact of nitrous oxide on electroencephalographic bicoherence during isoflurane anesthesia. Anesth Analg. 2012;115:572-577. Available in: http://doi.org/10.1213/ANE.0b013e3182575b70
Pavone KJ, Akeju O, Sampson AL, Ling K, Purdon PL, Brown EN. Nitrous oxide induced slow and delta oscillations. Clin Neurophysiol. 2016;127:556-564. Available in: http://doi.org/10.1016/j.clinph.2015.06.001
Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol. 2006;23:186-189. Available in: http://doi.org/10.1097/01.wnp.0000220079.61973.6c
Iriarte J, Artidea J. Fundamentos de electroencefalografía. Semiología electroencefalográfica. Manual de neurofisiología clínica. Ed Médica Panamericana 2013, pp 3-18.
Bennet C, Voss LJ, Barnard JPM, Sleigh JW. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science. Anesth Analg. 2009;109(2):539-50. Available in: http://doi.org/10.1213/ane.0b013e3181a9fc38
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: Part I background and basic signatures. Anesthesiology. 2015;123:937-960. Available in: http://doi.org/10.1097/ALN.0000000000000841
Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng. 2014;61:1555-1564. Available in: http://doi.org/10.1109/TBME.2014.2311996
Drummond JC, Brann CA, Perkins DE, Wolfe DE. A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia. Acta Anaesthesiol Scand. 1991;35:693-699. Available in: http://doi.org/10.1111/j.1399-6576.1991.tb03374.x
Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980-1002. Available in: http://doi.org/10.1097/00000542-199810000-00023
Shanker A, Abel JH, Schamberg G, Brown EN. Etiology of burst suppression EEG patterns. Front Psychol. 2021;12:673529. Available in: http://doi.org/10.3389/fpsyg.2021.673529
Chemali J, Ching S, Purdon PL, Solt K, Brown EN. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression. J Neural Eng. 2013;10:056017. Available in: http://doi.org/10.1088/1741-2560/10/5/056017
Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci. 2011;34:601-628. Available in: http://doi.org/10.1146/annurev-neuro-060909-153200
Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638-2650. Available in: http://doi.org/10.1056/NEJMra0808281
Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KFK, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110:E1142-51. Available in: http://doi.org/10.1073/pnas.1221180110
Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology. 2014;121:990-998. Available in: http://doi.org/10.1097/ALN.0000000000000436
Hesse S, Kreuzer M, Hight D. Gaskell A, Davari P, Singh D, et al. Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the postanaesthesia care unit: an early sign of postoperative complications. Br J Anaesth. 2019;122:622-634. Available in: http://doi.org/10.1016/j.bja.2018.09.016
Purdon PL, Pavone KJ, Akeju O, Smith AC, Sampson AL, Lee J, et al. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth. 2015;115:i46-57. Available in: http://doi.org/10.1093/bja/aev213
Cornelissen L, Kim SE, Lee JM, Brown EN, Purdon PL, Berde CB. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br J Anaesth. 2018;120:1274-1286. Available in: http://doi.org/10.1016/j.bja.2018.01.037
Jirsch J, Hirsch LJ. Nonconvulsive seizures: developing a rational approach to the diagnosis and management in the critically ill population. Clin Neurophysiol. 2007;118:1660-1670. Available in: http://doi.org/10.1016/j.clinph.2006.11.312
García PS, Kreuzer M, Hight D, Sleigh JW. Effects of noxious stimulation on the electroencephalogram during general anaesthesia: a narrative review and approach to analgesic titration. Br J Anaesth. 2021;126:445-457. Available in: http://doi.org/10.1016/j.bja.2020.10.036
Bai D, Pennefather PS, MacDonald JF, Orser BA. The general anesthetic propofol slows deactivation and desensitization of GABAA Receptors. J Neurosci. 1999;19:10635-10646. Available in: http://doi.org/10.1523/JNEUROSCI.19-24-10635.1999
Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA. 2011;108:8832-8837. Available in: http://doi.org/10.1073/pnas.1017041108
Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 1977;46:252-259. Available in: http://doi.org/10.1097/00000542-197704000-00005
Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci USA. 2010;107:22665-22670. Available in: http://doi.org/10.1073/pnas.1017069108
Kortelainen J, Koskinen M, Mustola S, Seppanen T. Effects of remifentanil on the spectrum and quantitative parameters of electroencephalogram in propofol anesthesia. Anesthesiology. 2009;111:574-583. Available in: http://doi.org/10.1097/ALN.0b013e3181af633c
Gaskell AL, Hight DF, Winders J, Tran G, Defresne A, Bonhomme V, et al. Frontal alpha-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique. Br J Anaesth. 2017;119:664-673. Available in: http://doi.org/10.1093/bja/aex170
Brown EN, Purdon PL, Akeju O, An J. Using EEG markers to make inferences about anaesthetic-induced altered states of arousal. Br J Anaesth. 2018;121:325-327. Available in: http://doi.org/10.1016/j.bja.2017.12.034
Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26:503-510. Available in: http://doi.org/10.1016/j.tips.2005.08.006
Sleigh J, Pullon RM, Vlisides PE, Warnaby CE. Electroencephalographic slow wave dynamics and loss of behavioural responsiveness induced by ketamine in human volunteers. Br J Anaesth. 2019;123:592-600. Available in: http://doi.org/10.1016/j.bja.2019.07.021
Kim MC, Fricchione GL, Brown EN, Akeju O. Role of electroencephalogram oscillations and the spectrogram in monitoring anaesthesia. BJA Educ. 2020;20:166-172. Available in: http://doi.org/10.1016/j.bjae.2020.01.004
Akeju O, Pavone KJ, Westover MB, Vazquez R, Prerau MJ, Harrell PG, et al. A comparison of propofol and dexmedetomidine induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology. 2014;121(5):978–89. Available in: http://doi.org/10.1097/ALN.0000000000000419
Huupponen E, Maksimow A, Lapinlampi P, Sarkela M, Saastamoinen A, Snapir A, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008;52:289-294. Available in: http://doi.org/10.1111/j.1399-6576.2007.01537.x
Zhang L, Fang K, Tao S, Deng L, Li H, Cao Y, et al. Electroencephalography-demonstrated mechanisms of dexmedetomidine-mediated deepening of propofol anesthesia: an observational study. Perioper Med. 2021;10:44. Available in: http://doi.org/10.1186/s13741-021-00213-4