2021, Number 3
<< Back Next >>
Rev cubana med 2021; 60 (3)
Antibody hybridization in Covid-19
Saavedra-Torres JS, Zúñiga CLF
Language: Spanish
References: 37
Page: 1-11
PDF size: 263.25 Kb.
ABSTRACT
Introduction:
The new coronavirus has genetic material. This allows a receptor to transform into the polybasic site of action and it is capable of infecting through multiple entry receptors and highlighting spike-like (S) proteins. The spike protein is a viral fusion protein of Covid-19, which is why in the therapeutic search the following questions are established, will antibody hybridization succeed in winning the war against the Covid-19 pandemic? Or can antibody-rich plasma keep people out of intensive care units? These questions are that current studies do not establish the true utility of immune therapy.
Objective:
To settle the usefulness of hybrid antibodies to the current Covid-19 pandemic and other coronaviruses.
Methods:
A bibliographic review was developed from the existing evidence about the panorama of proteomics in the study of the immune system to fight infections. A time frame was used between 1999 and 2020. A total of 37 documents, in English or Spanish, that comply with the inclusion protocols were selected; MeSH terms were used in the search. Observational or analytical studies were chosen; experimental, case report dating biochemical, biological, pathological and clinical aspects of the immune system as a therapeutic target in the current pandemic. The documentary analysis was carried out by the Health Research Group of the Universidad del Cauca-Popayán, with the support and direction of the University of Houston, Texas (USA), with the support of faculty from NASA Human Research Program.
Results:
The positive response to control this pandemic is based on preventive care and possible innovative therapies for the new coronaviruses that manage to be transmitted from animals to humans.
Conclusions:
The possible use of hybrid single domain antibodies to stop new viral infections is highlighted.
REFERENCES
Andersen KG, Rambaut A, Lipkin WI. The proximal origin of SARS-CoV-2. Nat Med. 2020. Disponible en: https://doi.org/10.1038/s41591-020-0820-9
Behring E, Kitasato S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr. 1890;16:1113-14.
Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human g-globulin. Vox Sang. 1962;7:157-74.
Andersson J, Skansén-Saphir U, Sparrelid E, Andersson U. Intravenous immune globulin affects cytokine production in T lymphocytes and monocytes/macrophages. Clin Exp Immunol. 1996;104(Suppl 1):10-20.
Aukrust P, Froland SS, Liabakk N-B, Müller F, Nordoy I, Haug C, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo . Blood. 1994;84:2136-43.
Basta M, Van Goor F, Luccioli S, Billings EM, Vortmeyer AO, Baranyi L, et al. Metcalfe DD. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;(4):431-8. Disponible en: https://doi.org/10.1038/nm836
Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758-7.
Bieber AJ, Warrington A, Pease LR, Rodriguez M. Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci. 2001;24(Suppl):39-44.
Bouhlal H, Hocini H, Quillent-Gregoire C, Donkova V, Rose S, Amara A, et al. Antibodies to C-C chemokine receptor 5 in normal human IgG block infection of macrophages and lymphocytes with primary R5-tropic strains of HIV-1. J Immunol. 2001;166:7606-11. Disponible en: https://doi.org/10.4049/jimmunol.166.12.7606
Juanjuan Zhao Jr, Quan Yuan, Haiyan Wang; medRxiv; Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease. 2019. Disponible en: https://doi.org/10.1101/2020.03.02.20030189
WHO, Update on COVID-19 in vitro diagnostics listed by National Regulatory Authorities in IMDRF jurisdictions; Published on 24 March 2020: points 4, 6, 7 and 8 were amended. Disponible en: https://www.who.int/publications/m/item/200408-imdrf-covid19-listing-update
Wong MC, Javornik Cregeen SJ, Ajami NJ, Petrosino JF. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv. 2020. Disponible en: https://doi.org/10.1101/2020.02.07.939207
Wang N. Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China. Virol. Sin. 2018;33:104-07.
Liu P, Chen W, Chen JP. Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses. 2019;11:979.
Yang XL. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of Severe Acute Respiratory Syndrome coronavirus. J. Virol. 2015;90:3253-56.
Menachery VD. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015;21:1508-13.
Letko M. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 2018;24:1730-37.
Comas Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses. 2019;11:253. Disponible en: https://doi.org/10.3390/v11030253
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nature Reviews Drug Discovery. 2020[acceso: 03/05/2020];19:149-150. Disponible en: Disponible en: https://media.nature.com/original/magazine-assets/d41573-020-00016-0/d41573-020-00016-0.pdf
Lu R, Zhao X, Li J, Niu P. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor. Lancet. 2020;395(10224):565-74.
Liu Y, Wang C, Mueller S, Paul AV, Wimmer E, Jiang P. Direct interaction between two viral proteins, the nonstructural protein 2c and the capsid protein vp3, is required for enterovirus morphogenesis. PLoS Pathog. 2010;6:e1001066. Disponible en: https://doi.org/10.1371/journ
Chuan Xiao. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020;9(1):378-81. https://doi.org/10.1080/22221751.2020.1727299
Casadevall A. The convalescent sera option for containing COVID-19; JCI: J. Clin. Invest. 2020. Disponible en: https://doi.org/10.1172/JCI138003
Maxmen A. How blood from coronavirus survivors might save lives. Nature. 2020;580(7801):16-17. Disponible en: https://doi.org/10.1038/d41586-020-00895-8
Casadevall A. How a Boy’s Blood Stopped an Outbreak; The Wall Street Journal. 2020;6:48
Stangel M, Pul R. Basic principles of intravenous immunoglobulin (IVIg) treatment. J. Neurol. 2006;253:V18-24. Disponible en: https://doi.org/10.1007/s00415-006-5003-1
Bennett JE, Dolin R, Martin J, Blaser M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th Edition. Octava. Expert Consult E, editor. New York: ELSEVIER; 2015
Winau F, Westphal O, Winau R. Paul Ehrlich--in search of the magic bullet. Microbes Infect. 2004;6:786-89. Disponible en: https://doi.org/10.1016/j.micinf.2004.04.003
Meng W. Rapid generation of human-like neutralizing monoclonal antibodies in urgent preparedness for influenza pandemics and virulent infectious diseases. PLoS ONE. 2013;8:e66276. Disponible en: https://doi.org/10.1371/journal.pone.0066276
Ying T, Prabakaran P, Du L. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nat Commun. 2015;6:8223. Disponible en: https://doi.org/10.1038/ncomms9223
Maxmen A. How blood from coronavirus survivors might save lives. News in focus 2020; Springer Nature Limited. PDF version EMS personnel work outside the Emergency Department at St. Barnabas Hospital, NYC Hospitals in New York City are beco. 2020[acceso: 03/05/2020]. Disponible en: Disponible en: https://media.nature.com/original/magazine-assets/d41586-020-00895-8/d41586-020-00895-8.pdf
Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 Infection. Chest. 2020;158(1):e9-e13. Disponible en: https://doi.org/10.1016/j.chest.2020.03.039
Zhao G, He L, Sun S, Qiu H, Tai W, Chen J, et al. A Novel Nanobody Targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy. J Virol. 2018;92(18). https://doi.org/10.1128/JVI.00837-18
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019 - nCoV spike in the prefusion conformation. Science. 2020[acceso: 03/05/2020];367(6483):1260-63. Disponible en: Disponible en: https://science.sciencemag.org/content/367/6483/1260
Yuan Y, Cao D, Zhang Y. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8. Disponible en: https://doi.org/10.1038/ncomms15092
Yu X, Zhang S, Jiang L. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27. Sci Rep. 2015[acceso: 03/05/2020];5:13133. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539535/
Mollura DJ, Hensley L, Jahrling P, Denison MR, Rao SS, Subbarao K, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015[acceso: 03/05/2020];6:7712. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/26218507/