2022, Number 4
<< Back Next >>
Arch Neurocien 2022; 27 (4)
Current knowledge and future directions in Huntington’s disease
Morales E, Herrera C, Montaño L, Martínez K, Meza M, Del Villar N, Mendoza X, Rodríguez A
Language: English
References: 89
Page: 31-43
PDF size: 597.70 Kb.
ABSTRACT
Huntington’s disease (HD) is an inherited neurodegenerative disorder due to abnormal CAG triplet
repeats in the IT-15 gene. It is characterized by a triad of progressive motor, psychiatric and cognitive
symptoms resulting from striatal neuronal loss. HD is most prevalent in Western countries, and a
particularly high prevalence in Latin America has been reported. In this article, we present a state-ofthe-
art review of HD, including the identification of different polymorphic markers in the genes coding
for UCHL1, HIP1, PGC1α, GRIK2, TBP, BDNF, and ZDHHC17, which could be associated with the age
at onset of motor signs in the presence of abnormal CAG repeats.
Despite significant advances in our understanding of the disease, there are still gaps in the comprehension
of its pathophysiology, and there is no effective therapeutic target to prevent the clinical onset of the
disease or delay its progression. Current pharmacological management is palliative, and the evidence
to generalize surgical approaches such as pallidotomy is insufficient. Recently, different therapies that
target neurodegeneration and the synthesis of mutant Huntingtin (mHtt) have shown promise, as well
as fetal neural cell transplantation into the striatum, which is offered as a surgical option providing
hope for the development of a true disease-modifying treatment that allows the recovery of motor and
cognitive functions through anatomical and functional integration of grafted neurons.
This narrative review aims to provide an approach to HD’s most relevant aspects, from its pathogenesis
and associated genetic polymorphisms to current treatment options.
REFERENCES
Scahill RI, Zeun P, Osborne-Crowley K, Johnson EB, Gregory S,Parker C, et al. Biological and clinical characteristics of genecarriers far from predicted onset in the Huntington’s disease YoungAdult Study (HD-YAS): a cross-sectional analysis. Lancet Neurol. 2020; 19(6):502–12. doi:10.1016/S1474-4422(20)30143-5
Fernández M. Papel de GSK-3 y Tau en la enfermedad deHuntington. Universidad Autónoma de Madrid; 2015.
Owens GE. Biochemical and biophysical characterizationof Huntingtin [Doctoral dissertation]. California Institute ofTechnology; 2016.
Migliore S, Jankovic J, Squitieri F. Genetic counseling inHuntington’s disease: Potential new challenges on horizon? FrontNeurol. 2019; 10:1–6. doi:10.3389/fneur.2019.00453
Massey TH, Jones L. The central role of DNA damage and repairin CAG repeat diseases. DMM Dis Model Mech. 2018; 11(1).doi:10.1242/dmm.031930
Chao T-K, Hu J, Pringsheim T. Risk factors for the onset andprogression of Huntington’s disease. Neurotoxicology [Internet].2017;61:79–99. http://linkinghub.elsevier.com/retrieve/pii/S0161813X17300165. doi:10.1016/j.neuro.2017.01.005
Castilhos R, Augustin M, Santos J, Perandones C, Saraiva-PereiraM, Jardim L. Genetic aspects of Huntington’s disease in LatinAmerica. A systematic review on Behalf of Rede Neurogenética.Clin Genet. 2016; 89(89):295–303. doi:10.1111/cge.12641
Cascante L. Análisis de un caso y revisión bibliográfica sobresíntomas psiquiátricos prodrómicos en la Enfermedad deHuntington [Medical Speciality Thesis]. Universidad de CostaRica; 2018.
Walker RH, Gatto EM, Bustamante ML, Bernal-Pacheco O,Cardoso F, Castilhos RM, et al. Huntington’s disease-likedisorders in Latin America and the Caribbean. Park Relat Disord.2018; 53:10–20. doi:10.1016/j.parkreldis.2018.05.021
Silva-Paredes G, Urbanos-Garrido RM, Inca-MartinezM, Rabinowitz D, Cornejo-Olivas MR. Economic burdenof Huntington’s disease in Peru. BMC Health Serv Res.2019;19(1):1–10. doi:10.1186/s12913-019-4806-6
Daniel C, Sepúlveda R, Sierra García N. Enfermedad deHuntington: estado del arte [Bachelor Thesis]. UniversidadTecnológica de Pereira; 2014.
Campo M del C, Bute LE. Vulnerable groups, the responsibilityof the state to guarantee the right to health: Huntington incommunities of the Caribbean region of Colombia. Perfiles lasCiencias Soc. 2016; 3(6):54–99.
Raymond LA, André VM, Cepeda C, Gladding CM, MilnerwoodAJ, Levine AMS. Review pathophysiology of Huntington’sdisease: Time-dependent alterations in synaptic andreceptor function. NSC. 2011;198:252–73. doi:10.1016/j.neuroscience.2011.08.052
Blumenstock S, Dudanova I. Cortical and striatal circuits inHuntington’s disease. Front Neurosci. 2020;14. doi:10.3389/fnins.2020.00082
Ospina-García N, Pérez-Lohman C, Vargas-Jaramillo JD,Cervantes-Arriaga A, Rodríguez-Violante M. Ganglios basales yconducta. Rev Mex Neuroci. 2017;18(6):74-86.
Tasset I, Sánchez F, Túnez I. Bases moleculares de la enfermedadde Huntington: Papel del estrés oxidativo. Rev Neurol.2009;49(8):424–9. doi:10.33588/rn.4908.2009192
Plotkin JL, Goldberg JA. Thinking outside the box(and arrow): Current themes in striatal dysfunction inmovement disorders. Neuroscientist. 2019; 25(4):359–79.doi:10.1177/1073858418807887
Langbehn DR, Hayden MR, Paulsen JS, Johnson H, AylwardE, Biglan K, et al. CAG-repeat length and the age of onset inHuntington’s disease (HD): A review and validation study ofstatistical approaches. Am J Med Genet Part B NeuropsychiatrGenet. 2010;153(2):397–408. doi:10.1002/ajmg.b.30992
Gusella JF, MacDonald ME, Lee J-M. Genetic modifiers ofHuntington’s disease. Mov Disord [Internet]. 2014;29(11):1359–65. http://doi.wiley.com/10.1002/mds.26001. doi:10.1002/mds.26001
Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, et al.Trehalose alleviates polyglutamine-mediated pathology ina mouse model of Huntington’s disease. Nat Med. 2004.doi:10.1038/nm985
Mo C, Hannan AJ, Renoir T. Environmental factors as modulatorsof neurodegeneration: Insights from gene-environmentinteractions in Huntington’s disease. Neurosci Biobehav Rev.2015; 52:178–92. doi:10.1016/j.neubiorev.2015.03.003
Van Dellen A, Hannan AJ. Genetic and environmental factors inthe pathogenesis of Huntington’s disease. Neurogenetics. 2004;5(1):9–17. doi:10.1007/s10048-003-0169-5
Metzger S, Bauer P, Tomiuk J, Laccone F, DiDonato S, GelleraC, et al. Genetic analysis of candidate genes modifying theage-at-onset in Huntington’s disease. Hum Genet. 2006;120(2):285–92. doi:10.1007/s00439-006-0221-2
Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, GelleraC, et al. The S18Y polymorphism in the UCHL1 gene is agenetic modifier in Huntington’s disease. Neurogenetics. 2006;7(1):27–30. doi:10.1007/s10048-005-0023-z
Xu E he, Tang Y, Li D, Jia J ping. Polymorphism of HD andUCHL-1 genes in Huntington’s disease. J Clin Neurosci. 2009;16(11):1473–7. doi:10.1016/j.jocn.2009.03.027
Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L.PGC-1alpha as modifier of onset age in Huntington disease. MolNeurodegener. 2009; 4(1):4–7. doi:10.1186/1750-1326-4-10
Moss DJH, Pardiñas AF, Langbehn D, Lo K, Leavitt BR, RoosR, et al. Identification of genetic variants associated withHuntington’s disease progression: a genome-wide associationstudy. Lancet Neurol. 2017; 16(9):701-711. doi: 10.1016/S1474-4422(17)30161-8
Lee JH, Lee JM, Ramos EM, Gillis T, Mysore JS, Kishikawa S, et al.TAA repeat variation in the GRIK2 gene does not influence ageat onset in Huntington’s disease. Biochem Biophys Res Commun.2012; 424(3):404–8. doi:10.1016/j.bbrc.2012.06.120
Alberch J, López M, Badenas C, Carrasco J, Milà M, MuñozE, et al. Association between BDNF Val66Met polymorphismand age at onset in Huntington’s disease. Neurology. 2005.doi:10.1212/01.wnl.0000175977.57661.b1
Benítez A. Enfermedad de Huntington: fundamentos molecularese implicaciones para una caracterización de los mecanismosneuronales responsables del procesamiento lingüístico. RevNeurol. 2009;48(2):75-84. doi:10.33588/rn.4802.2007473
Daza J, Coronell C, Brokate A, Caiaffa H, Alfonso H.Characterization of polymorphic sequences of CAG and CCGtriplets of Huntington’s disease in Colombian families. 2006.
Ncheux C, Mouret J-F, Diirr A, Agid Y, Feingold J, Brice A, etal. Sequence analysis of the CCG polymorphic region adjacentto the CAG triplet repeat of the HD gene in normal and HDchromosomes. JMed Genet Genet. 1995;3232. doi:10.1136/jmg.32.5.399
Shannon K, Hersch S. La enfermedad de Huntington. In: TarapataK, editor. Serie de Guías Familiares 1. New York: Huntington’sDisease Society of America; 2010.
Camargo-Mendoza M, Castillo-Triana N, Fandiño CardonaJM, Mateus-Moreno A, Moreno-Martínez M. Característicasdel habla, el lenguaje y la deglución en la enfermedad deHuntington. Rev la Fac Med. 2017;65(2):343–8. doi:10.15446/revfacmed.v65n2.57449
Snowden JS. The neuropsychology of Huntington’s disease. ArchClin Neuropsychol. 2017; 32(7):876-887. doi:10.1093/arclin/acx086. PMID: 28961886.
Mason S, Schaepers M, Barker R. Problems with socialcognition and decision-making in Huntington’s disease: Why isit important? Brain Sciences. 2021; 11(7):838. doi:10.3390/brainsci11070838
Rodríguez J, Díaz V, Rojas Y, Rodríguez Y, Núñez E. Actualizaciónen enfermedad de Huntington. Gen Univ Vladimir Ilich Lenin.2013;17(1):546–57. http://scielo.sld.cu/pdf/ccm/v17s1/ccm03513.pdf
Bono AD, Twaite JT, Krch D, McCabe DL, Scorpio KA, StaffordRJ, Borod JC. Mood and emotional disorders associated withparkinsonism, Huntington disease, and other movementdisorders. Handb Clin Neurol. 2021;183:175-196. doi:10.1016/B978-0-12-822290-4.00015-3. PMID: 34389117
Damiano M, Galvan L, Déglon N, Brouillet E. Mitochondria inHuntington’s disease. Biochim Biophys Acta - Mol Basis Dis.2010;1802(1):52–61. doi:10.1016/j.bbadis.2009.07.012
Ghosh R, Tabrizi S. Clinical features of Huntington’sdisease. Polyglutamine Disorders. 2018; 1049:1-28.doi:10.1007/978-3-319-71779-1_1
Cano M, Talavera V. Enfermedad de Huntington variedadWestphal: reporte de caso. Rev Mex Neurocienc. 2015;16(163):52–7.
McColgan P, Tabrizi S. Huntington’s disease: A clinical review.Eur J Neurol. 2017; 25(1):24-34. doi:10.1111/ene.13413
Julayanont P, Heilman KM, McFarland NR. Early-motorphenotype relates to neuropsychiatric and cognitive disordersin Huntington’s disease. Mov Disord. 2020;1-8. doi:10.1002/mds.27980.
Parra-Bolaños N, Benjumea-Garcés JS, Gallego-Tavera SY.Alteraciones neurofisiológicas producidas por la enfermedadde Huntington sobre la calidad de vida. Revista Chilenade Neuropsicología. 2016; 11(2):45–50. doi:10.5839/rcnp.2016.11.02.08
López-Mora DA, Camacho V, Pérez-Pérez J, Martínez-HortaS, Fernández A, Sampedro F, et al. Striatal hypometabolism inpremanifest and manifest Huntington’s disease patients. Eur JNucl Med Mol Imaging. 2016; 43(12):2183–9. doi:10.1007/s00259-016-3445-y
Quintana J. Neuropsiquiatría: Pet y Spect. Rev Chil Radiol.2002;8:63-9. doi:10.4067/S0717-93082002000200005
Molano J, Iragorri A, Ucrós G, Bonilla C, Tovar S, Herin D, etal. Obsessive-compulsive disorder symptoms in Huntington’sdisease: A case report. Rev Colomb Psiquiatr. 2008; 37(4):644-54. doi:10.1901/jaba.2008.37-644
Dayalu P, Albin RL. Huntington disease: Pathogenesis andtreatment. Neurol Clin. 2015;33(1):101-14. doi:10.1016/j.ncl.2014.09.003
Bennett R. Testing for Huntington disease: Making an informedchoice. Washington: University of Washington; 2008.
Roos R. Huntington’s disease: a clinical review. Orphanet J RareDis. 2010;5(1):40. doi:10.1186/1750-1172-5-40
Dickey AS, Spada AR. Therapy development in Huntingtondisease: From current strategies to emerging opportunities.Am J Med Genet. 2018;176(12):139-48. doi:10.1002/ajmg.a.38494
Potkin KT, Potkin SG. New directions in therapeutics for Huntingtondisease. Future Neurol. 2018;13(2):101-21. doi:10.2217/fnl-2017-0035
Frank S, Stamler D, Kayson E, Claassen DO, Colcher A, Davis C,et al. Safety of converting from tetrabenazine to deutetrabenazinefor the treatment of Chorea. JAMA Neurol. 2017; 74(8):977-82. doi:10.1001/jamaneurol.2017.1352
Claassen DO, Carroll B, De Boer LM, Wu E, Ayyagari R, GandhiS, et al. Indirect tolerability comparison of Deutetrabenazineand Tetrabenazine for Huntington’s disease. J Clin Mov Disord.2017;4(1):1-11. doi:10.1186/s40734-017-0051-5
Rodrigues FB, Duarte GS, Costa J, Ferreira JJ, Wild EJ.Tetrabenazine versus deutetrabenazine for Huntington’s disease:Twins or distant cousins? Mov Disord Clin Pract. 2017; 4(4):582-5. doi:10.1002/mdc3.12483
Verhagen Metman L, Morris MJ, Farmer C, Gillespie M, MosbyK, Wuu J, et al. Huntington’s disease: A randomized, controlledtrial using the NMDA-antagonist amantadine. Neurology. 2002; 59(5):694-9. doi:10.1212/wnl.59.5.694. PMID: 12221159
Pidgeon C, Rickards H. The pathophysiology andpharmacological treatment of Huntington’s disease. BehavNeurol. 2013;26(4):245-53. doi:10.3233/BEN-2012-120267.
Moulton CD, Hopkins CWP, Bevan-Jones WR. Systematicreview of pharmacological treatments for depressive symptomsin Huntington’s disease. Mov Disord. 2014; 29(12):1556–61.doi:10.1002/mds.25980
Unti E, Mazzucchi S, Palermo G, Bonuccelli U, CeravoloR. Antipsychotic drugs in Huntington’s disease. Expert RevNeurother. 2017;17(3):227-37. doi:10.1080/14737175.2016.1226134.
Ferguson MW, Kennedy CJ, Palpagama TH, WaldvogelHJ, Faull RLM, Kwakowsky A. Current and PossibleFuture Therapeutic Options for Huntington’s Disease. JCent Nerv Syst Dis. 2022; 14:11795735221092517.doi:10.1177/11795735221092517
Ayton S, Lei P, Appukuttan AT, Renoir T, Foliaki S, Chen F, etal. Brain zinc deficiency exacerbates cognitive decline in theR6/1 model of Huntington’s disease. Neurotherapeutics.2020;17(1):243-51. doi:10.1007/s13311-019-00785-6
Andrew Feigin. MEIM y PF para P y T del M-NLMC. VX15/2503Treatment for Huntington’s Disease (SIGNAL). 2015.
Southwell AL, Franciosi S, Villanueva EB, Xie Y, WinterLA, Veeraraghavan J, et al. Neurobiology of disease antisemaphorin4D immunotherapy ameliorates neuropathologyand some cognitive impairment in the YAC128 mouse modelof Huntington’s disease. Neurobiol Dis. 2015;76:46-56.doi:10.1016/j.nbd.2015.01.002
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA inHuntington’s disease. The Lancet Neurol. 2017; 16(10):837-47.doi:10.1016/S1474-4422(17)30280-6
Ionis Pharmaceuticals Inc. New Data from IONIS-HTTRxPhase 1/2 Study Demonstrates Correlation Between Reductionof Disease-causing Protein and Improvement in ClinicalMeasures of Huntington’s Disease. California: Press ReleasesIonis Pharmaceuticals; 2018. https://ir.ionispharma.com/node/23661/pdf
Besusso D, Schellino R, Boido M, Belloli S, Parolisi R, ConfortiP, et al. Stem cell-derived human striatal progenitors innervatestriatal targets and alleviate sensorimotor deficit in a rat modelof Huntington’s disease. Stem cell reports. 2020; 14(5):876-91.doi:10.1016/j.stemcr.2020.03.018
Kim HS, Jeon I, Noh J-E, Lee H, Hong KS, Lee N, et al. Intracerebraltransplantation of BDNF-overexpressing human neural stemcells (HB1.F3.BDNF) promotes migration, differentiation andfunctional recovery in a rodent model of Huntington’s disease.Exp Neurobiol. 2020; 29(2):130-7. doi:10.5607/en20011
Barker RA, Swain RA. Neural transplantation for the treatmentof Huntington’s disease. Eur Neurol Rev. 2010; 5(2):41-45.doi:10.17925/ENR.2010.05.02.41
Choi KA, Choi Y, Hong S. Stem cell transplantation forHuntington’s diseases. Methods. 2018 Jan;133:104-12. doi:10.1016/j.ymeth.2017.08.017
Mirek E, Filip M, Banaszkiewicz K, Rudzińska M, Szymura J,Pasiut S, et al. The effects of physiotherapy with PNF concepton gait and balance of patients with Huntington’s disease - pilotstudy. Neurol Neurochir Pol. 2015;49(6):354-7. doi: 10.1016/j.pjnns.2015.09.002.
Zarotti N, Dale M, Eccles F, Simpson J. Psychological interventionsfor people with Huntington’s disease: A call to arms. J HuntingtonsDis. 2020;9(3):231-43. doi: 10.3233/JHD-200418. PMID:32894248; PMCID: PMC7683059.
Barkmeier-Kraemer JM, Clark HM. Speech-language pathologyevaluation and management of hyperkinetic disorders affectingspeech and swallowing function. Tremor Other HyperkinetMov (NY). 2017; 7:489. doi: 10.7916/D8Z32B30. PMID:28983422; PMCID: PMC5628324
Huntington G. Medical and surgical reporter. On Chorea.1872;1(789):320-1.
Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell.2000;101(1):57-66. doi:10.1016/S0092-8674(00)80623-6
Fernandes J. La enfermedad de Huntington: una visión biomolecular. 2001; 32(8):762-7. doi:10.33588/rn.3208.2000484
Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, et al. Regional and progressive thinning of the cortical ribbon inHuntington’s disease. Neurology. 2002; 58(5):695-701. doi:10.1212/wnl.58.5.695
Arango J, Iglesias J, Lopera F. Características clínicas y neuropsicológicas de la enfermedad de Huntington: una revisión. Rev Neurol.2003; 37:758-65. doi:10.33588/rn.3708.2003010
Laks J, Rocha M, Capitao C, Domingues RC, Ladeia G, Lima M, et al. Functional and motor response to low dose olanzapine inHuntington’s disease: Case report. Arq Neuropsiquiatr. 2004;62(4):1092-4. doi:10.1590/S0004-282X2004000600030
Vásquez M. Diagnóstico molecular de la EH en Costa Rica [Postgraduate Thesis]. Instituto de Investigaciones en Salud; 2005.
Rosenblatt A. Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci. 2007;9(2):191-7. doi:10.31887/DCNS.2007.9.2/arosenblatt
Altamirano Ley J, Estrada G. Demencias valoradas con tomografía por emisión de positrones y 18 F-fluorodesoxiglucosa. Acta MédicaGrupo Ángeles. 2009; 7(1):29-41.
Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’sdisease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031-44. doi:10.1016/j.neuron.2012.05.009
Li JY, Conforti L. Axonopathy in Huntington’s disease. Exp Neurol. 2013;246:62-71. doi:10.1016/j.expneurol.2012.08.010
Frank S. Treatment of Huntington’s Disease. Neurotherapeutics. 2014;11(1):153-60. doi:10.1007/s13311-013-0244-z
Kumar A, Kumar Singh S, Kumar V, Kumar D, Agarwal S, Rana MK. Huntington’s disease: An update of therapeutic strategies. Gene.2015;556(2):91-7. doi:10.1016/j.gene.2014.11.022
Kobal J, Cankar K, Pretnar J, Zaletel M, Kobal L, Teran N, et al. Functional impairment of precerebral arteries in Huntington disease. JNeurol Sci. 2016;372:363-8. doi:10.1016/j.jns.2016.10.033
Mirallave A, Morales M, Cabib C, Muñoz EJ, Santacruz P, Gasull X, et al. Sensory processing in Huntington’s disease. Clin Neurophysiol.2017;128(5):689-96. doi:10.1016/j.clinph.2017.01.009
Minkova L, Gregory S, Scahill RI, Abdulkadir A, Kaller CP, Peter J, et al. Cross-sectional and longitudinal voxel-based gray matterasymmetries in Huntington’s disease. Neuroimage Clin. 2017; 17:312-24. doi:10.1016/j.nicl.2017.10.023
Chattopadhyay B, Ghosh S, Gangopadhyay PK, Das SK, Roy T, Sinha KK, et al. Modulation of age at onset in Huntington’sdisease and spinocerebellar ataxia type 2 patients originated from eastern India. Neurosci Lett. 2003;345(2):93-6. doi:10.1016/s0304-3940(03)00436-1