2021, Number 3
Mathematical diagnosis of acute myocardial infarction and failure using proportional entropy
Language: Spanish
References: 29
Page: 1-15
PDF size: 598.03 Kb.
ABSTRACT
Introduction: Physical and mathematical theories have allowed the development of new diagnostic methodologies of cardiac dynamics, as one based on the evaluation of entropy proportions to differentiate normality from cardiac disease, although its diagnostic capacity must be yet determined in specific critical scenarios as acute heart failure and acute myocardial infarction.Objective: To describe diagnostic evaluations of cardiac dynamics in patients diagnosed with acute myocardial infarction or acute heart failure.
Methods: A blind study was developed with 20 Holter registries; 5 normal, 8 with acute cardiac failure and 7 with acute myocardial infarction. Then, a method based on the proportions of the entropy of the numerical attractors was applied. The maximum and minimum values of the heart rate and the total number of beats per hour were taken for at least 18 hours, with which numerical attractors were generated, which measure the probability of consecutive heart rate pairs. An evaluation of all dynamics was made based on the entropy and its proportions. Finally, a comparison between the diagnostic precision of the mathematical method with respect to the conventional clinical diagnosis was performed.
Results: Normal cases were mathematically differentiated from the pathological ones through the evaluation of Holter registries for 18 hours, achieving values of sensitivity and specificity of 100% as well as a Kappa coefficient of 1, indicating a perfect diagnostic concordance between the mathematical method to diagnose the cardiac dynamics with respect to the clinical diagnosis.
Conclusions: The proportions of entropy allow to establish objective diagnoses of cardiac dynamics, mathematically differentiating normal dynamics from those with acute myocardial infarction and with acute cardiac failure.
REFERENCES
Mayer C, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics. 2014 [acceso: 22/01/2020]; 15(Suppl 6):S2. Disponible en: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-S6-S2
Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, coord. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Vol I. Buenos Aires: Comunidad Editora Latinoamericana; 2015. p. 315-44.
Rodríguez J. Dynamical systems applied to dynamic variables of patients from the Intensive Care Unit (ICU). Physical and mathematical Mortality predictions on ICU. Journal of Medicine and Medical Sciences. 2015 [acceso: 22/01/2020]; 6(8):102-8. Disponible en: https://www.interesjournals.org/articles/dynamical-systems-applied-to-dynamic-variables-of-patients-from-the-intensive-care-unit-icu-physical-and-mathematical-mo.pdf
Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000 [acceso: 22/01/2020]; 101:47-53. Disponible en: https://www.ahajournals.org/doi/10.1161/01.cir.101.1.47?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&
Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17:1341-53. PMID: 26177817
Rodríguez J, Prieto S, Correa C, Mendoza F, Weisz G, Soracipa M, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf - Mandelbrot law. Journal of Modern of Physics. 2015 [acceso: 22/01/2020]; 6(13):1881-8. Disponible en: https://www.scirp.org/pdf/JMP_2015102911032237.pdf
Rodríguez J, Prieto S, Pérez C, Correa C, Soracipa M, Jattin J, et al. Predicción temporal de CD4+ en 80 pacientes con manejo antirretroviral a partir de valores de leucocitos. Infectio. 2020 [acceso: 22/01/2020]; 24:103-7. Disponible en: https://www.revistainfectio.org/index.php/infectio/article/view/841/937