2023, Number 1
<< Back Next >>
Rev Biomed 2023; 34 (1)
Influence of climate change on leishmaniasis transmission in Latin America and the research status in Mexico
Mikery-Pacheco OF, Moo-Llanes DA, Rebollar-Téllez EA, Castillo-Vera A
Language: Spanish
References: 99
Page: 44-58
PDF size: 755.14 Kb.
ABSTRACT
The impact of climate change on humans is ever greater, ironically because
of anthropogenic factors such as globalization. In the case of vectorborne
diseases as leishmaniases, the climate change (CC) can affect their
epidemiology by shifting the biology and ecology of its vectors, reservoirs
and pathogens. In this descriptive review, a search was made in BioMed
Central, PubMed and Biblioteca virtual em saúde and aims to provide
information available about the effect of CC on incidence and seasonal and
spatial distribution of the leishmaniases, the pathogen and its vectors, and how
it can impact the emergence and resurgence of this disease in Latin American
countries, highlighting the problem in Mexico. Information generated from
2002 to 2021 was collected from scientific data bases. We found 48 articles,
including six review articles. The great potential of leishmaniasis to expand
its geographic distribution ranges, variation of its transmission cycles,
substantial increase in the number of cases and increase in the investment for
the exploration of alternatives of its treatment and control, this has caused
that leishmaniasis leave the “neglected diseases” status and be re-categorized
as “emerging diseases”.
REFERENCES
Organización Mundial de la Salud. Información sobrelas enfermedades transmitidas por vectores. CampañasMundiales de Salud Pública de La OMS. 2015. http://www.who.int/campaigns/world-health-day/2014/vectorborne-diseases/es/ (Accessed on May, 2016)
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, CanoJ, et al. Leishmaniasis worldwide and global estimates ofits incidence. PloS One. 2012; 7: e35671.
Pan American Health Organization. Leishmaniases:Epidemiological report of the Americas. ReportLeishmaniases Nº 1. 2013; http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=21608&Itemid=. Acceced July 2016.
Akhoundi M, Kuhls K, Cannet A, Votýpka J, MartyP, Delaunay P, et al. A historical overview of theclassification, evolution, and dispersion of Leishmaniaparasites and sandflies. PLOS Negl Trop Dis. 2016; 10,e0004349.
World Health Organization. The global healthobservatory: Explore a world of health data. 2022.https://www.who.int/data/gho/data/themes/topics/topicdetails/GHO/leishmaniasis (accessed on January, 2022).
Pigott DM, Bhatt S, Golding N, Duda KA, BattleKE, Brady OJ, et al. Global distribution maps of theleishmaniases. eLife. 2014; 3: 1-21.
World Health Organization. Leishmaniasis. 2015. http://www.who.int/leishmaniasis/en/ (accessed on December,2015)
Rueda LM, Patel KJ, Axtell RC, Stinner RE.Temperature-dependent development and survival ratesof Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). J Med Entomol. 1990; 27: 892-898.
Chan M, Johansson MA. The incubation periods ofdengue viruses. PloS One. 2012; 7; e50972.
Carrington LB, Armijos MV, Lambrechts L, SocttTW. Fluctuation at a low mean temperature accelerateDengue virus transmission by Aedes aegypti. PLoS NeglTrop Dis. 2013; 7: e2190.
Barker CM, Reisen WK. Epidemiology of vector-bornediseases. In: Mullen GR, Durden LA (Eds.), Med VetEntomol (pp. 33-49). 2019.
IPCC. Resumen para responsables de políticas. In:Field CB, Barros VR, Dokken DJ, et al. (Eds.), Cambioclimático 2014: Impactos, adaptación y vulnerabilidad.Contribución del Grupo de trabajo II al Quinto Informede Evaluación del Grupo Intergubernamental de Expertossobre el Cambio Climático (p. 34). 2014. OrganizaciónMeteorológica Mundial, Ginebra, Suiza.
Cardenas R, Sandoval CM, Rodríguez-Morales AJ,Franco-Paredes C. Impact of climate variability in theocurrence of leishmaniasis in Northeastern Colombia.Am J Trop Med Hyg. 2006; 75: 273-277.
IPCC. Fourth Assessment Report (AR4). In: SolomonS, Qin D, Manning M, et al. (Eds.), Climate Change2007: The Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change (p. 996).2007. Cambridge University Press, Cambridge.
IPCC. Cambio climático 2013. Bases físicas. Resumenpara responsables de políticas. (p. 34). 2013.
Chaves LF, Pascual M. Climate cycles and forecasts ofcutaneous leishmaniasis, a nonstationary vector-bornedisease. PLoS Medicine. 2006; 3: 1320-1328.
Moo-Llanes DA. Nicho ecológico actual y futuro de laLeishmaniasis (Kinetoplastida: Trypanosomatidae) en laregión Neotropical. Rev Biol Trop. 2016; 64: 1237-1245.
Capotondi A, Wittenberg AT, Newman M. UnderstandingENSO diversity. Bull Am Meteor Soc. 2015; 96: 921-938.
IPCC. Assessment reports. In: Climate Change 2001:Impacts, Adaptation, and Vulnerability. Contributionof Working Group II to the third assessment report ofthe Intergovernmental Panel on Climate Change. 2001.[on line] http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=45 (accessed on May, 2016).
Confalonieri UEC, Dutra FRLS. Climate Change andVector Borne Diseases in Latin America. In: MalikA, Grohmann E, Akhtar R (Eds.), EnvironmentalDeterioration and Human Health: Natural andanthropogenic determinants (pp. 315-324). 2014.Springer Netherlands.
Latif M, Keenlyside NS. El Niño/Southern Oscillationresponse to global warming. PNAS. 2009; 106: 20578-20583.
Cardenas R, Sandoval CM, Rodriguez-Morales AJ,Vivas P. Zoonoses and climate variability: the exampleof leishmaniasis in Southern departments of Colombia.Ann N Y Acad Sci. 2008; 1149: 326-330.
Cabaniel G, Rada L, Blanco JJ, Rodríguez-Morales AJ,Escalera JP. Impacto de los eventos de El Niño SouthernOscillation (ENSO) sobre la leishmaniosis cutáneaen Sucre, Venezuela, a través del uso de informaciónsatelital, 1994-2003. Rev Peru Med Exp Salud Publica.2005; 22: 32-38.
Chaves LF, Calzada JE, Valderrama A, Saldaña A.Cutaneous leishmaniasis and sand fly fluctuations areassociated with El Niño in Panamá. PLoS Negl Trop Dis.2014; 8: e3210.
Yamada K, Valderrama A, Gottdenker N, Cerezo L,Minakawa N, Saldaña A, et al. Macroecological patternsof american cutaneous leishmaniasis transmissionacross the health areas of Panamá (1980–2012). ParasiteEpidemiol Control. 2016; 1: 42-55.
de Souza FAR, Andreoli RV, Kayano TM, CarvalhoAL American cutaneous leishmaniasis cases in theMetropolitan Region of Manaus, Brazil: association withclimate variables over time. Geospat Health. 2015; 10:314-321.
Roger A, Nacher M, Hanf M, Drogoul AS, Adenis A,Basurko C, et al. Climate and leishmaniasis in FrenchGuiana. Am J Trop Med Hyg. 2013; 89: 564-569.
Gómez C, Rodríguez-Morales AJ, Franco-ParedesC. Impact of climate variability in the ocurrence ofleishmaniasis in Bolivia. Am J Trop Med Hyg. 2006; 75:42.
Aparicio M, Ortiz P. Vulnerabilidad y adaptacion de lasalud humana ante los efectos del cambio climático enBolivia. MDS-VMARNDF, PNCC PNUD, OPS/OMSGEF.2000.
Salomón OD, Quintana MG, Mastrángelo AV, FernándezMS Leishmaniasis and climate change—case study:Argentina. J Trop Med. 2012: 1–11.
Franke CR, Ziller M, Staubach C, Latif M. Impact of theEl Niño/Southern Oscillation on Visceral Leishmaniasis,Brazil. Emerg Infect Dis. 2002; 8: 914-917.
Kuhn KG. Global warming and leishmaniasis in Italy.Bull Trop Med Int Health. 1999; 7: 1-2.
Bounoua L, Kahime K, Houti L, Blakey T, Ebi KL,Zhang P, et al. Linking climate to incidence of zoonoticcutaneous leishmaniasis (L. Major) in Pre-SaharanNorth Africa. Int J Environ Res Public Health. 2013; 10:3172-3191.
Hlavacova J, Votypka J, Volf P. The effect of temperatureon Leishmania (Kinetoplastida: Trypanosomatidae)development in sand flies. J Med Entomol. 2013; 50:955-958.
Moo-Llanes DA, Arque-Chunga W, Carmona-CastroO, Yañez-Arenas CA, Yañez-Trujillano H, Cheverría-Pacheco L, et al. Shifts in the ecological niche ofLutzomyia peruensis under climate change scenarios inPerú. Med Vet Entomol. 2017; 31: 123-131.
Ximenes MFFM, Castellón EG, Souza MF, MenezesAAL, Queiroz JW, Silva VPM, et al. Effect of abioticfactors on seasonal population dynamics of Lutzomyialongipalpis (Diptera: Psychodidae) in NortheasternBrazil. J Med Entomol. 2006; 43: 990-995.
González C, Wang O, Strutz SE, González-Salazar C,Sánchez-Cordero V, Sarkar S. Climate change and riskof leishmaniasis in North America: predictions fromecological niche models of vector and reservoir species.PLoS Negl Trop Dis. 2010; 4: e585.
Moo-Llanes D, Ibarra-Cerdeña CN, Rebollar-Téllez EA,Ibáñez-Bernal S, González C, Ramsey JM. Current andfuture niche of North and Central American sand flies(Diptera: Psychodidae) in climate change scenarios.PLoS Negl Trop Dis. 2013; 7: e2421.
Rodriguez-Rojas JJ, Rodriguez-Moreno A, Berzunza-Cruz M, Gutierrez-Granados G, Becker I, Sanchez-Cordero V, et al. Ecology of phlebotominae sandfliesand putative reservoirs hosts of leishmaniasis in a borderarea in Northeastern Mexico: implications for the risk oftransmission of Leishmania mexicana in Mexico and theUSA. Parasite. 2017; 24: 33.
Moo-Llanes DA, Pech-May A, Ibarra-CerdeñaCN, Rebollar-Téllez EA, Ramsey JM. Inferringdistributional shifts from Pleistocene to future scenariosof epidemiologically important North and CentralAmerican sandflies (Diptera: Psychodidae). Med VetEntomol. 2019; 33: 31-43.
Bates PA, Depaquit J, Galati EAB, Kamhawi S, Maroli M,McDowell MA, et al. Recent advances in phlebotominesand fly research related to leishmaniasis control. ParasitVectors. 2015; 8: 131.
Tabachnick WJ. Nature, nurture and evolution of intraspeciesvariation in mosquito arbovirus transmissioncompetence. Int J Environ Res Public Health. 2013; 10:249-277.
Ebrahimi S, Bordbar A, Parvizi P. Genetic dynamicsin the sand fly (Diptera: Psychodidae) nuclear andmitochondrial genotypes: evidence for vector adaptationat the border of Iran with Iraq. Parasit Vectors. 2013; 9:319.
Abad-Franch F, Monteiro FA. Biogeography andevolution of Amazonian triatomines (Heteroptera:Reduviidae): implications for Chagas disease surveillancein humid forest ecoregions. Mem Inst Oswaldo Cruz.2007; 102: 57-69.
Jamison A, Tuttle E, Jensen R, Bierly G, Gonser R.Spatial ecology, landscapes, and the geography ofvector-borne disease: A multi-disciplinary review. ApplGeogr. 2015; 63: 418-426.
Oliveira EF, Fernandes CES, Silva EA, Brazil RP,Oliveira AG. Climatic factors and population densityof Lutzomyia longipalpis (Lutz & Neiva, 1912) in anurban endemic area of visceral leishmaniasis in midwestBrazil. J Vector Ecol. 2013; 38: 224-228.
Pérez J,Virgen A, Rojas JC, Rebollar-Téllez EA,Castillo A, Infante F, et al. Species composition andseasonal abundance of sandflies (Diptera: Psychodidae:Phlebotominae) in coffee agroecosystems. Mem InstOswaldo Cruz. 2014; 109: 80-86.
Guzman H, Tesh RB. Effects of temperature and dieton the growth and longevity of phlebotomine sand flies(Diptera: Psychodidae). Biomedica. 2000; 20: 190-199.
Lane RP. Geographic variation in Old World phlebotominesandflies. In: Service MW (Ed.) Biosystematics ofHaematophagous Insects (pp. 77-90). Clarendon Press,Oxford. 1988.
Feliciangeli MD, Rabinovich J. Abundance of Lutzomyiaovallesi but not Lu. gomezi (Diptera: Psychodidae)correlated with cutaneous leishmaniasis incidence innorth-central Venezuela. Med Vet Entomol. 1998; 12:121-131.
Salomón OD, Wilson ML, Munstermann LE, Travi BL.Spatial and temporal patterns of phlebotomine sand flies(Diptera: Psychodidae) in a cutaneous leishmaniasisfocus in Northern Argentina. J Med Entomol. 2004; 41:33-39.
González C, Paz A, Ferro C. Predicted altitudinal shiftsand reduced spatial distribution of Leishmania infantumvector species under climate change scenarios inColombia. Acta Trop. 2014; 129: 83-90.
Peterson AT, Soberón J, Pearson RG, Anderson RP,Martínez-Meyer E, Nakamura M, et al. Ecologicalniches and geographic distributions. Monographs inPopulation Biology 49. Princeton University Press, NewJersey. 2011.
Quintana M, Salomón O, Guerra R, de Grosso ML,Fuenzalida A. Phlebotominae of epidemiologicalimportance in cutaneous leishmaniasis in northwesternArgentina: risk maps and ecologic niche models. MedVet Entomol. 2013; 27: 39-48.
Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG.Applications of ecological niche modeling for speciesdelimitation: a review and empirical evaluation usingday geckos (Phelsuma) from Madagascar. Syst Biol.2007; 56: 907-923.
Crozier L, Dwyer G. Combining population-dynamicand ecophysiological models to predict climate-inducedinsect range shifts. Am Nat. 167, 853-866.
Oshaghi MA, Ravasan NM, Javadian E, Rassi Y, SadraeiJ, Enayati AA, et al. Application of predictive degreeday model for field development of sandfly vectors ofvisceral leishmaniasis in northwest of Iran. J VectorBorne Dis. 2009; 46: 247-254.
Peterson AT, Shaw J. Lutzomyia vectors for cutaneousleishmaniasis in Southern Brazil: ecological nichemodels, predicted geographic distributions, and climatechange effects. Int J Parasitol. 2003; 33: 919-931.
Carvalho BM, Rangel EF, Ready PD, Vale MM.Ecological niche modelling predicts southward expansionof Lutzomyia (Nyssomyia) flaviscutellata (Diptera:Psychodidae: Phlebotominae), vector of Leishmania(Leishmania) amazonensis in South America, underclimate change. PLoS ONE. 2015; 10: e0143282.
Peterson AT, Pereira RS, Neves VFC. Usingepidemiological survey data to infer geographicdistributions of leishmaniasis vector species. Rev SocBras Med Trop. 2004; 37: 10-14.
Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, JinF-F, et al. Increasing frequency of extreme El Niñoevents due to greenhouse warming. Nature Clim Change.2014: 4: 111-116.
Galvis-Ovallos F, Espinosa Y, Gutiérrez-Marín R,Fernández N, Rodriguez-Morales A, Sandoval C. Climatevariability and Lutzomyia spinicrassa abundance in anarea of cutaneous leishmaniasis transmission in Norte deSantander, Colombia. Int J Antimicrob Agents. 2009; 34:0924-8579.
Galvis OF, Silva YRE, Fernandez N, Gutierrez R, GalatiEAB, Sandoval CM. The sandfly fauna, anthropophilyand the seasonal activities of Pintomyia spinicrassa(Diptera: Psychodidae: Phlebotominae) in a focus ofcutaneous leishmaniasis in northeastern Colombia. MemInst Oswaldo Cruz. 2013; 108(3): 297-302.
Ximenes MFFM, Maciel JC, Jerônimo SMB.Characteristics of the biological cycle of Lutzomyiaevandroi Costa Lima & Antunes, 1936 (Diptera:Psychodidae) under Experimental Conditions. Mem InstOswaldo Cruz. 2001; 96(6): 883-886.
Kasap OE, Alten B. Comparative demography of thesand fly Phlebotomus papatasi (Diptera: Psychodidae) atconstant temperatures. J Vector Ecol. 2006; 31: 378-385.
Rivas GBS, Souza NA, Peixoto AA, Bruno RV. Effects oftemperature and photoperiod on daily activity rhythms ofLutzomyia longipalpis (Diptera: Psychodidae). ParasitesVectors. 2014; 7, 278.
Benkova I, Volf P. Effect of temperature on metabolismof Phlebotomus papatasi (Diptera: Psychodidae). J MedEntomol. 2007; 44(1): 150-154.
Becker I, Carrada-Figueroa G, Gudiño-Zayas M,González C, Berzunza-Cruz M, Rivas-Sánchez B, etal. Análisis de la leishmaniasis en México. Consulta deexpertos OPS/OMS sobre la leishmaniasis visceral en lasAméricas. Informe Final. Brasilia, Brazil. November 23-25. 2005.
Sánchez-García L, Berzunza-Cruz M, Becker-FauserI, Rebollar-Téllez EA. Sand flies naturally infectedby Leishmania (L.) mexicana in the peri-urban area ofChetumal city, Quintana Roo, México. Trans R Soc TropMed Hyg. 2010; 104: 406-411.
Instituto de Diagnóstico y Referencia Epidemiológicos.Leishmaniasis en México. [on line], http://www.indre.salud.gob.mx/interior/leishmaniasis_en_mexico.html.2012, (Accessed on September, 2014).
Rodriguez-Rojas JJ, Rodriguez-Moreno A, Berzunza-Cruz M, Gutierrez-Granados G, Becker I, Sanchez-Cordero V, et al. Ecology of phlebotominae sandfliesand putative reservoirs hosts of leishmaniasis in a borderarea in Northeastern Mexico: implications for the risk oftransmission of Leishmania mexicana in Mexico and theUSA. Parasites. 2017; 24: 33.
Monroy-Ostria A, Sánchez-Tejeda G. Survey ofcutaneous leishmaniasis in Mexico: Leishmania species,clinical expressions and risk factors. En: Claborn D(Ed.). The epidemiology and ecology of leishmaniasis,InTech. 2017; 153-165.
Andrade-Narváez FJ, Albertos-Alpuche NE, Canto-LaraSB, Vargas-González A, Valencia-Pacheco G, Palomo-Cetina A. Risk factors associated with CL infection anddisease in the State of Campeche, Yucatan Peninsula. En:Wijeyaratne P, Goodman T (Eds.), Leishmaniasis ControlStrategies. A Critical Evaluation of IDRC-supportedResearch, International Development Research CenterMR 322e. 1992; 193-205.
Andrade-Narváez FJ, Simmonds-Díaz EB, Aguilar-RicoS, Andrade-Narváez M, Palomo-Cetina A, Canto-LaraSB, et al. Incidence of localized cutaneous leishmaniasis(Chiclero’s ulcer) in Mexico. Trans R Soc Trop MedHyg. 1990; 84: 219-220.
Ibáñez-Bernal S, Durán-Luz J. An actualized catalogueof the Psychodidae (Diptera) of Mexico and their knowndistribution by state. Zootaxa. 2022; 5104 (3): 347-408.
Walters LL, Irons KP, Chaplin G, Tesh RB. Life cycle ofLeishmania major (Kinetoplastida: Trypanosomatidae)in the neotropical sand fly Lutzomyia longipalpis(Diptera:Psychodidae). J Med Entomol. 1993; 30: 699-718.
Claborn DM, Rowton ED, Lawyer PG, Brown GC,Keep LW. Species diversity and relative abundance ofphlebotomine sand flies (Diptera: Psychodidae) on threeArmy installations in the southern United States andsusceptibility of a domestic sand fly to infection withOld World Leishmania major. Military Medicine. 2009;174: 1203-1208.
González C, Rebollar-Téllez EA, Ibáñez-Bernal S,Becker-Fauser I, Martínez-Meyer E, Peterson AT, et al.Current knowledge of Leishmania vectors in Mexico:how geographic distributions of species relatetotransmission areas. Am J Trop Med Hyg. 2011; 85: 839-846.
Centro Nacional de Programas Preventivos y Control deEnfermedades. Prevención y control de las leishmaniasis,Programa sectorial de salud 2013-2018. 2014. Mexico,D.F. pp. 68..
Qiao H, Soberón J, Peterson AT. No silver bullets incorrelative ecological niche modelling: insights fromtesting among many potential algorithms for nicheestimation. Methods Ecol Evol. 2015; 6: 1126-1136.
Rebêlo JMM. Episódios do El Niño e a distribuiçãotemporal de calazar na Ilha de São Luís, Maranhão,Brasil. Cadernos de Saúde Pública. 2008; 24: 1713-1714.
da Silva AS, Andreoli RV, de Souza RAF, Chagas ÉCDS,de Moraes DS, de Figueiredo RC, et al. Impact of El Niñoon the dynamics of American cutaneous leishmaniasis ina municipality in the western Amazon. Acta Trop. 2021;222: 106032.
Thompson RA, Lima JWO, Maguire JH, Braud DH,Scholl DT. Climatic and demographic determinants ofAmerican visceral leishmaniasis in Northeastern Brazilusing remote sensing technology for environmentalcategorization of rain and region influences onleishmaniasis. Am J Trop Med Hyg. 2002; 67(6): 648-655.
Viana GMC, Nascimento MDSB, Rabelo ÉMF,Neto JAD, Júnior JRB, Galvão CS, Santos AC, etal. Relationship between rainfall and temperature:observations on the cases of visceral leishmaniasis inSão Luis Island, State of Maranhão, Brazil. Rev SocBras Med Trop. 2011; 44(6):722-724.
Rodriguez-Morales AJ, Herrera-Giraldo AC, Botero S,Dib JC. P244 Potential impacts of climate change andvariability on cutaneous leishmaniasis epidemiology inRisaralda and Magdalena, Colombia, 1985–2002. Int JAntimicrob Agents. 2013; 42: S119.
Valderrama-Ardila C, Alexander N, Ferro C, Cadena H,Marin D, Holford TR, et al. Environmental risk factorsfor the incidence of american cutaneous leishmaniasis ina Sub-Andean Zone of Colombia (Chaparral, Tolima).Am J Trop Med Hyg. 2010; 82: 243-250.
Chaves LF, Cohen JM, Pascual M, Wilson ML. SocialExclusion Modifies Climate and Deforestation Impactson a Vector-Borne Disease. PLoS Negl Trop Dis. 2008;2; e176.
Chaves LF. Climate and recruitment limitation of hosts:the dynamics of American cutaneous leishmaniasis seenthrough semi-mechanistic seasonal models, Ann TropMed Parasitol. 2009; 103: 221-234.
Aversi-Ferreira RA, Galvão JD, Silva SD, CavalcanteGF, Silva EV, Bhatia-Dey N, et al. Geographical andEnvironmental Variables of Leishmaniasis Transmission.In (Ed.), Leishmaniasis - Trends in Epidemiology,Diagnosis and Treatment. IntechOpen. 2014; https://doi.org/10.5772/57546.
Palatnik-de-Sousa CB, Day MJ. One Health: The globalchallenge of epidemic and endemic leishmaniasis.Parasites Vectors. 2011; 4: 197.
Rajesh K, Sanjay K. Change in global climate andprevalence of visceral Leishmaniasis. Int J Sci Res.2013; 3(1): 1-2.
Pigott DM, Bhatt S, Golding N, Duda KA, BattleKE, Brady OJ, et al. Global distribution maps of theleishmaniases. eLife. 2014; 3: 1-21.
Findlater A. Climate variability and leishmaniasis inPeru: an exploratory analysis of surveillance data. Thesis.71 p. Degree of Master of Science in Epidemiology.Department of Epidemiology, Biostatistics andOccupational Health, McGill University, Montreal.2011.
Rodriguez-Morales AJ, Rada L, Blanco JJ, CabanielG, Escalera JP. Climate and cutaneous leishmaniasisin Venezuela. 2005; Poster Session: Tropical/TravelMedicine.
Michalsky ÉM, Fortes-Dias CL, França-Silva JC, RochaMF, Barata RA, Dias ES. Association of Lutzomyialongipalpis (Diptera: Psychodidae) population densitywith climate variables in Montes Claros, an area ofAmerican visceral leishmaniasis transmission in the stateof Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2009;104; 1191-1193.
Nieves E, Oraá L, Rondón Y, Sánchez M, SánchezY, Rujano M, et al. Distribution of vector sandfliesleishmaniasis from an endemic area of Venezuela. J TropDis. 2015; 3: 157.
Peterson AT, Campbell LP, Moo-Llanes DA, TraviB, Gonzalez C, Ferro MC, et al. Influences of climatechange on the potential distribution of Lutzomyialongipalpis sensu lato (Psychodidae: Phlebotominae).Int J Parasitol. 2017; 47: 667-674.
Altamiranda-Saavedra M, Gutiérrez JD, Araque A,Valencia-Mazo JD, Gutiérrez R, Martínez-Vega RA.Effect of El Niño Southern Oscillation cycle on thepotential distribution of cutaneous leishmaniasis vectorspecies in Colombia. PLoS Negl Trop Dis. 2020; 14:e0008324.
Ready PD. Leishmaniasis emergence and climate change.Rev Sci Tech - Int Off Epizoot. 2008; 27: 399-412.