2022, Number 3
<< Back Next >>
Enf Infec Microbiol 2022; 42 (3)
COVID-19 and its diagnosis
Ruiz AG, Córdoba AFJ, Agustino MA
Language: Spanish
References: 34
Page: 121-131
PDF size: 398.99 Kb.
ABSTRACT
COVID-19 was an emerging disease at the end of 2019 caused by the new coronavirus SARS-COV-2 that quickly became
a world pandemic event. The origin of SARS-COV-2 is the proposed product of mutations of bat coronavirus due
it shares more than 96% genomic identity. This essay aims to disseminate the fundamentals of the virus and its
biology. Also, we review the diagnostic technologies and those from available vaccines. We end with some lessons
for humanity to consider in the future.
REFERENCES
World Health Organization (who), “Coronavirus disease(covid-19) outbreak”, who, 2022. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus- 2019. Consultado en febrero de 2022.
World Health Organization (who), “Situation reports”,who, 2022. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.Consultado en febrero de 2022.
World Health Organization (who), “Timeline: who’ covid-19 response”, who, 2022. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline. Consultado en febrero de2022.
Piamo, M.A.J. y García, R.M., “sars-cov, mers-cov y sarscov-2: lo que se sabe de estos coronavirus epidémicos”,Cuba y Salud, 2020, 15 (3): 64-75.
Rahimi, A., Mirzazadeh, A. y Tavakolpour, S., “Geneticsand genomics of sars-cov-2: a review of the literature withthe special focus on genetic diversity and sars-cov-2genome detection”, Genomics, 2021, 113 (1 Pt 2): 1221-1232. doi: 10.1016/j.ygeno.2020.09.059.
Harvey, W.T., Carabelli, A.M., Jackson, B. et al., sarscov-2 variants, spike mutations and immune escape”,Nat Rev Microbiol, 2021, 19 (7): 409-424. doi: 10.1038/s41579-021-00573-0.
Afzal, A., “Molecular diagnostic technologies for covid-19: limitations and challenges”, Journal of AdvancedResearch, 2020, 26: 149-159. Disponible en: https://doi.org/10.1016/j.jare.2020.08.002.
Piña-Sánchez, P., Monroy-García, A., Montesinos, J.J.et al., “Biología del sars-cov-2: hacia el entendimiento ytratamiento de covid-19”, Rev Med Inst Mex Seguro Soc,2020, 58: 1-19.
Khateeb, J., Li, Y. y Zhang, H., “Emerging sars-cov-2variants of concern and potential intervention approaches”,Crit Care, 2021, 25 (1): 244. doi:10.1186/s13054-021-03662-x.
Abbas, A.K., Lichtman, A.H. y Pillai, S. Cellular and molecularimmunology, E-book, Elsevier Health Sciences,2014.
Schultze, J.L. y Aschenbrenner, A.C., “covid-19 and thehuman innate immune system”, Cell, 2021, 184 (7):1671-1692. doi: 10.1016/j.cell.2021.02.029.
Kawai, T. y Akira, S., “Toll-like receptors and their crosstalkwith other innate receptors in infection and immunity”,Immunity, 2011, 34 (5): 637-650. doi: 10.1016/j.immuni.2011.05.006.
Gomes, C.P., Fernandes, D.E., Casimiro, F. et al., “Cathepsinl in covid-19: from pharmacological evidencesto genetics”, Front Cell Infect Microbiol, 2020, 10:589505. doi: 10.3389/fcimb.2020.589505.
Zhao, M.M., Yang, W.L., Yang, F.Y. et al., “Cathepsin lplays a key role in sars-cov-2 infection in humans andhumanized mice and is a promising target for new drugdevelopment”, Signal Transduct Target Ther, 2021, 6 (1):134. doi: 10.1038/s41392-021-00558-8.
National Institutes of Health, “covid-19 treatment guidelines”,nih, 2022. Disponible en: https://www.covid-19treatmentguidelines.nih.gov/.
World Health Organization (who), “Coronavirus disease(covid-19) technical guidance: laboratory testing for2019-ncov in humans”, who, 2022. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance/.Consultado en febrero de 2022.
World Health Organization (who), “In vitro diagnostics”,who, 2022. Disponible en: https://extranet.who.int/pqweb/in-vitro-diagnostics. Consultado en febrero de2022.
World Health Organization (who), “Methods for the detectionand characterisation of sars-cov-2 variants: firstupdate”, 2021, who Regional Office for Europe.
Kevadiya, B.D., Machhi, J., Herskovitz, J. et al., “Diagnosticsfor sars-cov-2 infections”, Nat Mater, 2021, 20(5): 593-605. doi: 10.1038/s41563-020-00906-z.
Li, D. y Li, J., “Immunologic testing for sars-cov-2 infec-tion from the antigen perspective”, J Clin Microbiol,2021, 59 (5): e02160-20. doi: 10.1128/JCM.02160-20.
Mak, G.C., Cheng, P.K., Lau, S.S. et al., “Evaluation of rapidantigen test for detection of sars-cov-2 virus”, J ClinVirol, 2020, 129: 104500. doi: 10.1016/j.jcv.2020.104500.
Tan, A.S., Nerurkar, S.N., Tan, W.C.C., Goh, D., Lai,C.P.T. y Poh, S.Y.J., “The virological, immunological,and imaging approaches for covid-19 diagnosisand research”, slas Technol, 2020, 25 (6): 522-544.doi: 10.1177/2472630320950248. 23. Nguyen, P.Q.,
Soenksen, L.R., Donghia, N.M. et al., “Wearable materialswith embedded synthetic biology sensors forbiomolecule detection”, Nat Biotechnol, 2021, 39 (11):1366-1374. doi: 10.1038/s41587-021-00950-3.
Comisión Federal para la Protección contra RiesgosSanitarios (Cofepris), “Cofepris informa sobre pruebasmoleculares”, 2020. Disponible en: https://www.gob.mx/cofepris/es/articulos/cofepris-informa-sobre-pruebas-moleculares?idiom=es.
Comisión Federal para la Protección contra RiesgosSanitarios (Cofepris), “Informe semanal de variantescovid-19. Reporte de vigilancia genómica del virus sarscov-2 en México”, 2021. Disponible en: https://coronavirus.gob.mx/variantes-covid-19/.
European Centre for Disease Prevention and Control (ecdc),“Methods for the detection and characterisation ofsars-cov-2 variants, first update”, ecdc, 2021. Disponibleen: https://www.ecdc.europa.eu/en/publications-data/methods-detection-and-characterisation- sars-cov-2-variants-first-update.
Rodríguez Sánchez, I.P. y Barrera Saldaña, H.A., “La reacciónen cadena de la polimerasa a dos décadas desu invención”, Ciencia uanl, 2004, 7 (3). Disponible en:http://eprints.uanl.mx/id/eprint/1584.
Da Silva, S.J., De Lima, S.C., Da Silva, R.C., Kohl, A.y Pena, L., “Viral load in covid-19 patients: implicationsfor prognosis and vaccine efficacy in the contextof emerging sars-cov-2 variants”, Frontiers inMedicine, 2021. Disponible en: https://doi.org/10.3389/fmed.2021.836826.
World Health Organization (who), “Transmission ofsars-cov-2: implications for infection prevention precautions”,who, 2020. Disponible en: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions. Consultado en febrero de 2022.
World Health Organization (who), “Vaccine tracker”, who,2022. Disponible en: https://covid19.trackvaccines.org/agency/who/. Consultado en febrero de 2022.
World Health Organization (who), “How do vaccineswork?”, who, 2020. Disponible en: https://www.who.int/news-room/feature-stories/detail/how-do-vaccines-work?adgroupsurvey=%7Badgroupsurvey%7D&gclid=Cj0KCQiA6NOPBhCPARIsAHAy-2zARUfP9ghCQhOmiI5pRA98bh75iMlOIHBN2GjnVFrPL4-GVr6imPrYaAkCXEALw_wcB. Consultado enfebrero de 2022.
Lai, C.C., Chen, I.T., Chao, C.M., Lee, P.I., Ko, W.C. yHsueh, P.R., “covid-19 vaccines: concerns beyond protectiveefficacy and safety”, Expert Rev Vaccines, 2021,20 (8): 1013-1025. doi:10.1080/14760584.2021.1949293.
Kim, J.H., Marks, F. y Clemens, J.D., “Looking beyondcovid-19 vaccine phase 3 trials”, Nat Med, 2021, 27 (2):205-211. doi: 10.1038/s41591-021-01230-y.
Dai, L. y Gao, G.F., “Viral targets for vaccines againstcovid-19”, Nat Rev Immunol, 2021, 21 (2): 73-82. doi:10.1038/s41577-020-00480-0.