2000, Number 5
<< Back Next >>
Enf Infec Microbiol 2000; 20 (5)
Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men
Craig WA
Language: Spanish
References: 64
Page: 178-190
PDF size: 103.12 Kb.
ABSTRACT
Investigations over the past 20 years have demonstrated that antibacterials can vary markedly in the time course of antimicrobial activity. These differences in pharmacodynamic activity have implications for optimal dosage regimens. The results of more recent studies suggest that the magnitude of the pharmacokinetic/pharmacodynamic parameters required for efficacy are relatively similar in animal infection models and in human infections. However, there is still much to learn. Additional studies are needed to further correlate pharmacokinetic/pharmacodynamic parameters for many antibacterials with therapeutic efficacy in a variety of animal infection models and in human infections. The potential value of using pharmacokinetic/pharmacodynamic parameters as guides for establishing optimal dosing regimens for new and old drugs and for new emerging pathogens and resistant organisms, for setting susceptibility break points, and for reducing the cost of drug development should make the continuing search for the therapeutic rationale of antibacterial dosing of mice and men worthwhile.
REFERENCES
Bundtzen RW, Gerber AU, Cohn DL, Craig WA. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981;3:28-37.
Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986;108:835-40.
Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis 1991;74(suppl):63-70.
Ebert SC, Craig WA. Pharmacodynamic properties of antibiotics: application to drug monitoring and dosage regimen design. Intect Control Hosp Epidemiol 1990;11:319-26.
McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977;135:217-23.
Odenholt-Tornqvist I, Löwdin E, Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin and amikacin. Antimicrob Agents Chemother 1992; 36: 1852-8.
McDonald PJ, Wetherall BL, Pruu1 H. Postantibiotic leukocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev Infect Dis 1981;3:38-44.
Shah PM, Junghanns W, Stille W. Dosis-Wirkungs-Beziehung der Bakterizide bei E. coli, K. pneumoniae und Staphylococcus aureus. Dtsch Med Wochenschr 1976;101:325-8.
Craig WA. Postantibiotic effects and the dosing of macrolides, azalides, and streptogramins. In: Zinner SH, Young LS, Acar JF, Neu HC, eds. Expanding indications for the new macrolides, azalides, and streptogramins. New York: Marcel Dekker, 1997:27-38.
Craig WA, Gudmundsson S. Postantibiotic effect. In: Lorian V, ed. Antibiotics in laboratory medicine. 4th ed. Baltimore: Williams and Wilkins, 1996:296-329.
Bigger JW. The bactericidal action of penicillin on Staphylococcus pyogenes: part I. Irish J Med Sci 1944;227:533-68.
Eagle H, Musselman AD. The slow recovery of bacteria from the toxic effects of penicillin. J Bacteriol 1949;58:475-90.
Parker RF, Luse S. The action of penicillin on staphylococcus: further observations on the effect of a short exposure. J Bacteriol 1948;56:75-81.
Bustamante CI, Drusano GIL, Tatem BA, Standiford HC. Postantibiotic effect of imipenem on Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984;26:648-82.
Gudmundsson S, Vogelman B, Craig WA. The in-vivo postantibiotic effect of imipenem and other new antimicrobials. J Antimicrob Chemother 1986;18(suppl E):67-73.
Craig WA. Post-antibiotic effects in experimental infection models: relationship to in-vitro phenomena and to treatment of infections in man. J Antimicrob Chemother 1993; 31(suppl D):149-58.
Vogelman B, Gudmundsson S, Turnidge J, Leggett J, Craig WA. In vivo postantibiotic effect in a high infection in neutropenic mice. J Infect Dis 1988;157:287-98.
Fantin B, Ebert S, Leggett J, Vogelman B, Craig WA. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against Gram-negative bacilli. J Antimicrob Chemother 1991;27:829-36.
Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991;27(suppl C):29-40.
Täuber MG, Zak O, Scheld WM, Hengstler B, Sande MA. The postantibiotic effect in the treatment of experimental meningitis caused by Streptococcus pneumoniae in rabbits. J Infect Dis, 1984;149:575-83.
McGrath BJ, Marchbanks CR, Gilbert D, Dudley MN. In vitro postantibiotic effect following repeated exposure to imipenem, temafloxacin, and tobramycin. Antimicrob Agents Chemother 1993;37:1723-5.
den Hollander JG, Mouton JW, van Goor M-LPJ, Vleggar FP, Verbrugh HA. Alteration of postantibiotic effect during one dosing interval of tobramycin, simulated in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1996;40:784-6.
Lorian V. Effect of low antibiotic concentrations on bacteria effects on ultrastructure, virulence, and susceptibility to immunodefenses. In: Lorian V. ed, Antibiotics in laboratoty medicine, 3nd Baltimore: William and Wilkins. 1991:493-555.
Cars O, Odenholt-Tornqvist I. The post-antibiotic sub-MIC effect in vitro and in vivo. J Antimicrob Chemother 1993;3(Suppl D): 159-66.
Craing WA. Interrelationships Between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 1995;22:89-96.
Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infec Dis 1988;158:831-47.
Leggett JE, Fantin B, Ebert S, et al. Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis 1989;159:281-92.
Craig W, Dalhoff A. Pharmacokinetics and pharmacodynamics of fluoroquinolones in experimental animals. In: Kuhlman J, Dalhoft A, Zeiler HJ. Eds. Handbook of experimental pharmacology, Vol. 127: quinolone antibacterials (in press).
Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudonomas sepsis. Antimicrob Agents Chemother 1993;37:483-90.
Knudsen JD, Fuursted K, Espersen F, Frimodt-Moller N. Pharmacodynamics of teicoplanin and vancomycin against staphylococci and pneumococci in the mouse peritonitis model [abstract A39]. In: Abstract of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (New Orleans). Washington, DC: American Society for Microbiology, 1996.
Walder R, Andes D, Ebert S, Coklin R, Craig W. Pharmacodynamic comparison of 6-demethyl 6-deoxytetracycline (DMDOT) and minocycline (MINO) in an animal infection model [abstract F116]. In: Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy (Orlando, Florida). Washington, DC: American Society for Microbiology, 1994.
Kalanger T, Digranes A, Bergan T, Solber CO. The pharmocokinetics of ceftriaxone in serum, skin blister and thread fluid. J Antimicrob Chemother 1984;13:479-85.
Ryan DM, Hodges B, Spencer GR, Harding SM. Simultaneous comparison of three methods for assessing ceftazidime penetration into extravascular fluid. Antimicrob Agents Chemother 1982;22:995-8.
Wise R, Baker S, Livingston R. Comparison of cefotaxime and moxalactam pharmacokinetics and tissue levels. Antmicrob Agents Chemother 1980;18:369-71.
Redington J, Ebert SC, Craig WA. Role of antimicrobial pharmacokinetics and pharmacodynamics in surgical prophylaxis. Rev Infect Dis 1991;13(Suppl 10):S790-9.
Roosendaal R, Bakker-Woundeberg IAJM, van de Berg JC, Michel MF. Therapeutic efficacy continuous versus intermittent administration of ceftazidime in an experimental Klebsiella pneumoniae pneumonia in rats. J Infect Dis 1985;152:373-8.
Craig WA, Ebert S, Watanabe Y. Differences in time above MIC required for efficacy of beta-lactams in animal infection models [abstract 86] In: Abstract of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco). Washington, DC: American Society for Microbiology, 1993.
Craig WA. Antimocrobial resistance issues of the future. Diagn Microbiol Infect Dis 1996;25:213-7.
Howie VM, Dillard R, Lawrence B. In vivo sensitivity test in otitis media: efficacy of antibiotics. Pediatrics 1985;75:8-13.
Howie V. Eradication of bacterial pathogens from middle ear infections. Clin Infect Dis 1992;14(Suppl 2):S209-11.
Klein JO. Microbiologic efficacy of antimicrobial drugs for acute otitis media. Pediatr Infect Dis J 1993;12:973-5.
Dagan R, Abramson D, Leibovitz E, et al. Impaired bacteriologic response to oral cephalosporins in acute otitis media caused by pneumococci with intermediate resistance to penicillin. Pediatr Infect Dis 1996;15:980-5.
Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 1996;15:255-9.
Hoberman A, Paradise JL, Block S, et al. Efficacy of amoxicillin/clavulanate for acute otitis media: relation to Streptococcus pneumoniae susceptibility. Pediatr Infect Dis J 1996;15:955-62.
Gehanno P, Lenoir G, Berche P. In vivo correlates for Streptococcus pneumoniae penicillin resistance in acute otitis media. Antimicrob Agents Chemother 1995;39:271-2.
Pallares R, Linares J, Vadillo M, et al. Resistance to penicillin and cephalosporin and mortality from severe pneumococcal in Barcelona, Spain. N Engl J Med 1995;333:474-80.
Weinstein MP, Stratto CW, Hawley HB, Ackley A, Reller LB. Multicenter collaborative evaluation of a standardized serum bactericidal test as a predictor of therapeutic efficacy in acute and chronic osteomyelitis. Am J Med 1987;83:218-26.
Craig WA. Kinetics of antibiotics in relation to effective and convenient outpatient parenteral therapy. International Journal of Antimicrobial Agents 1995;5:19-22.
Craig WA, Ebert SC. Continuous infusion of b-lactam antibiotics. Antimicrob Agents Chemother 1992;36:2577-83.
Stosor V, Peterson LR, Postelnick M, Noskin GA. Therapy of vancomycin resistant Enterococcus faecium sepsis: a novel strategy [abstract 170] In: Program and abstracts of the 34th Annual Meeting of the Infectious Diseases Society of America (New Orleans). Alexandria, Virginia: Infectious Diseases Society of America, 1996.
Fantin B, Leggett J, Ebert S, Craig WA. Correlation between in vitro and in vivo activity of antimicrobial agents against gram-negative bacilli in a murine infection model. Antimicrob Agents Chemother 1991;35:1413-22.
Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993;37:1073-81.
Preston SL, Drusano GL, Berman AL, et al. Prospective development of pharmacodynamic relationships between measures of levofloxacin exposure and measures of patient outcome. In: Abstract of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (New Orleans). Washington, DC: American Society for Microbiology, 1996.
Paladino JA, Sperry HE, Backes JM, et al. Clinical and economic evaluation of oral ciprofloxacin after an abbreviated course of intravenous antibiotics. Am J Med 1991;91:462-70.
Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and metilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimiocrob Agents Chemother 1987;31:1054-60.
Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987;155:93-9.
Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother 1991;35:117-23.
Verpooten GA, Giuliano RA, Verbist L, Eestermans G, De Broe ME. Once-daily dosing decreases renal accumulation of gentamicin and netilmicin. Clin Pharmacol Ther 1989;45:22-7.
Tran Ba Huy P, Deffrennes D. Aminoglycoside ototoxicity: Influence of dosage regimen on drug uptake and correlation between membrane binding and some clinical features. Acta Otolaryngol (Stockh) 1988;105:511-5.
Gilbert DN. Editorial response: meta-analysis area no longer required for determining the efficacy of single daily dosing of aminoglycosides. Clin Infect Dis 1997;24:816-9.
Ter Braak EW, De Vries PJ, Bouter KP, et al. Once-daily dosing regimen for aminoglycoside plus b-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med 1990;89:58-66.
International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. Ann Intern Med 1993;119:584-93.
Fantin B, Carbon C. Importance of the aminoglicoside dosing regimen in the penicillin-netilmiecin combination for treatment of Enterococcus faecalis-induced experimental endocarditis. Antimicrob Agents Chemother 1990;34:2387-91.
Marangos MN, Nicolau DP, Nightingale Ch, Quiatiliani R. Influence of gentamicin (GEN) dosing interval in the efficacy of penicillin containing regimens in experimental Enterococcal faecalis endocarditis, In: Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (New Orlands). Washington, DC: American Society for Microbiology, 1996.