2022, Number 8
<< Back Next >>
Med Crit 2022; 36 (8)
Applications and implications of end-inspiratory pause in mechanical ventilation
Pérez-Nieto OR, López-Fermín J, Guerrero-Gutiérrez MA, Escarraman-Martínez D, Deloya-Tomás E, Sánchez-Díaz JS, Soriano-Orozco R, Morgado-Villaseñor LA, Martínez-Camacho MA, Gómez-Gonzales A, Zamarron-López EI, López PFJ, Jones-Baro RA
Language: Spanish
References: 38
Page: 521-527
PDF size: 264.25 Kb.
ABSTRACT
The use of the end inspiratory pause (EIP) in mechanical ventilation has been going on for more than 50 years and with greater momentum in the 1970s, an improvement in the partial pressure of arterial oxygen (PaO
2) is attributed to the increase mean airway pressure, greater clearance of partial pressure of arterial carbon dioxide and allows monitoring of plateau pressure in ventilatory mechanics; However, the Clinical studies on its use are few and controversial. This article addresses the physiological and pathophysiological mechanisms and the evidence on the use of EIP in mechanical ventilation.
REFERENCES
López-Herce J, Carrillo A. Anales de Cuidados intensivos pediátricos. Ventilación mecánica: indicaciones, modalidades y programación y controles. Ed. Elsevier; 2008, pp. 321-329.
Pérez Nieto O, Zamarrón López I, Soriano Orozco R, et al. Manual de Ventilación Mecánica AVENTHO. 2da Edición, Editorial Prado, 2019, pp, 19-39.
García-Prieto E, Amado-Rodríguez L, Albaiceta GM; por el grupo de Insuficiencia Respiratoria Aguda de la SEMICYUC. Monitorización de la mecánica respiratoria en el paciente ventilado [Monitorization of respiratory mechanics in the ventilated patient]. Med Intensiva. 2014;38(1):49-55. doi: 10.1016/j.medin.2013.09.003.
Pérez M, Mancebo J. Monitorización de la mecánica ventilatoria [Monitoring ventilatory mechanics]. Med Intensiva. 2006;30(9):440-448. Spanish. doi: 10.1016/s0210-5691(06)74567-3.
Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann. Intensive Care. 2019;9:69. Available in: https://doi.org/10.1186/s13613-019-0540-9
Battaglini D, Sottano M, Ball L, et al. Ten golden rules for individualized mechanical ventilation in acute respiratory distress syndrome. Journal of Intensive Medicine. 2021;1(1):42-51. Available in: https://doi.org/10.1016/j.jointm.2021.01.003
Pérez-Nieto OR, Deloya-Tomás E, Lomelí-Terán JM, et al. Presión de distensión (driving pressure): principal objetivo para la protección alveolar. Neumol Cir Torax. 2018;77(3):222-227.
Cardoso-Ramírez MA, González-Prado I, Martínez-Medel AG, et al. Impacto de la presión de distensión alveolar en los pacientes con síndrome de distrés respiratorio agudo (SDRA): revisión narrativa. Med Crit. 2020;34(4):231-237. doi:10.35366/95878.
Vandenbunder B, Ehrmann S, Piagnerelli M, et al. Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study. Crit Care. 2021;25:52. Available in: https://doi.org/10.1186/s13054-020-03433-0
Pan Q, Pan J, Zhang Z, Fang L, Ge H. Assessment of respiratory system compliance under pressure control ventilation without an inspiratory pause maneuver. Physiol Meas. 2021;42(8). doi: 10.1088/1361-6579/ac1d3b.
Koppurapu VS, Puliaiev M, Doerschug KC, Schmidt GA. Ventilated patients with COVID-19 show airflow obstruction. J IntensiveCareMed. 2021;36(6):696-703. doi: 10.1177/08850666211000601.
Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance--part 2: clinical implications. Crit Care Med. 1992;20(11):1604-1616.
Choi WJ, Jung SH. The effects of inspiratory pause on airway pressure and gas exchange under same I:E ratio in volume- controlled ventilation. Tuberc Respir Dis. 1998;45(5):1022-1030.
Aguirre-Bermeo H, Morán I, Bottiroli M et al. End-inspiratory pause prolongation in acute respiratory distress syndrome patients: effects on gas exchange and mechanics. Ann Intensive Care. 2016;6:81. Available in: https://doi.org/10.1186/s13613-016-0183-z
Aboab J, Niklason L, Uttman L, Brochard L, Jonson B. Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients. Crit Care. 2012;16:R39.
Knelson JH, Howatt WF, DeMuth GR. Effect of respiratory pattern on alveolar gas exchange. J Appl Physiol. 1970;29:328-331.
Shanholtz C, Brower R. Should inverse ratio ventilation be used in adult respiratory distress syndrome? Am J Respir Crit Care Med. 1994;149:1354-1358.
Mercat A, Richard JM, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-655. doi: 10.1001/jama.299.6.646.
Mercat A, Diehl JL, Michard F, Anguel N, Teboul JL, Labrousse J, Richard C. Extending inspiratory time in acute respiratory distress syndrome. Crit Care Med. 2001;29(1):40-44. doi: 10.1097/00003246-200101000-00011.
Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, Brochard L. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. J Appl Physiol. 2008;105:1944-1949.
Carteaux G, Parfait M, Combet M, Haudebourg AF, Tuffet S, Mekontso Dessap A. Patient-self inflicted lung injury: a practical review. J Clin Med. 2021;10:2738. Available in: https://doi.org/10.3390/ jcm10122738
Bates J, Smith BJ. Ventilator-induced lung injury and lung mechanics. Ann Transl Med. 2018;6(19):378. Available in: https://doi.org/10.21037/atm.2018.06.2
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017;5(14):292. Available in: https://doi.org/10.21037/atm.2017.06.55
Grassi A, Ferlicca D, Lupieri E, et al. Assisted mechanical ventilation promotes recovery of diaphragmatic thickness in critically ill patients: a prospective observational study. Crit Care. 2020;24:85. Available in: https://doi.org/10.1186/s13054-020-2761-6
Yoshida T, Nakahashi S, Nakamura MAM, et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med. 2017;196(5):590-601. doi: 10.1164/rccm.201610-1972OC
Foti G, Cereda M, Banfi G, Pelosi P, Fumagalli R, Pesenti A. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1210-1216. doi: 10.1164/ajrccm.156.4.96-02031.
Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. Ann Transl Med. 2018;6(19):376. doi: 10.21037/atm.2018.06.06.
Bellani G, Grassi A, Sosio S, Foti G. Plateau and driving pressure in the presence of spontaneous breathing. Intensive Care Med. 2019;45(1):97-98. doi: 10.1007/s00134-018-5311-9.
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020;24(1):106. doi: 10.1186/s13054-020-2777-y.
Grasselli G, Castagna L, Abbruzzese C, et al. Assessment of airway driving pressure and respiratory system mechanics during neurally adjusted ventilatory assist. Am J Respir Crit Care Med. 2019;200(6):785-788. doi: 10.1164/rccm.201902-0454LE.
Dianti J, Bertoni M, Goligher EC. Monitoring patient–ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med. 2020;46(12):2338-2341. Available in: https://doi.org/10.1007/s00134-020-06167-3
Bertoni M, Telias I, Urner M, et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care. 2019;23(1):346. Available in: https://doi.org/10.1186/s13054-019-2617-0
Roesthuis L, van den Berg M, van der Hoeven H. Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann Intensive Care. 2021;11:26. Available in: https://doi.org/10.1186/s13613-021-00821-9
Nordstrom L. Haemodynamic effects of intermittent positive-pressure ventilation with and without an end-inspiratory pause. Acta Anaesthesiol Scand Suppl. 1972;47:29-56. doi: 10.1111/j.1399-6576.1972.tb00594.x.
Berneus B, Carlsten A. Effect of intermittent positive-pressure ventilation on cardiac output in poliomyelitis. Acta Med Scand. 1955;152(1):19-30. doi: 10.1111/j.0954-6820.1955.tb05637.x.
Lyager S. Ventilation-perfusion ratio during intermittent positive-pressure ventilation. Importance of no-flow interval during the insufflation. Acta Anaesthesiol Scand. 1970;14(3):211-232. doi: 10.1111/j.1399-6576.1970.tb00966.x.
Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG. Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology. 1966;27(5):584-590. doi: 10.1097/00000542-196609000-00009.
Cook TI, Trimble C, Smith DE, Rehman I, Trummer MJ. Intermittent positive pressure and extrathoracic assisted breathing in hypovolemia: comparative hemodynamic effects. Arch Surg. 1971;102(6):586-588. doi: 10.1001/archsurg.1971.01350060050014.