2022, Number 4
<< Back Next >>
Medicina & Laboratorio 2022; 26 (4)
Pediatric metabolic index in Venezuelan adolescents
Acosta-García E
Language: Spanish
References: 26
Page: 323-333
PDF size: 120.21 Kb.
ABSTRACT
Introduction. The pediatric metabolic index (PMI) is a specific index
according to sex and age to predict cardiometabolic alterations in this population.
The objective of this study was to assess the PMI in adolescents according
to grouped cardiovascular risk factors (CVRF) and its relationship with indicators
of adiposity, dyslipidemia, oxidative stress, inflammation, insulin resistance and
hypertension in adolescents.
Methodology. The study was descriptive, correlational
and cross-sectional in 80 adolescents. Glycemia, lipid profile, insulin, ultrasensitive
PCR, IL-6, TNF-α, 8-isoprostane and oxidized LDL were determined,
and the HOMA-IR index was calculated. The weight, height and waist circumference
were measured, and the body mass index, conicity index, waist/height ratio
were determined and then the PMI was calculated. Blood pressure, physical
activity and smoking levels were also determined.
Results. Those who presented
three or more CVRF showed higher PMI values than those who presented less
risk factors (p‹0.001). In addition, the PMI correlated with indicators of adiposity,
blood pressure, lipid profile components, oxidative stress markers and HOMA-IR.
Conclusion. The PMI increased as the group of CVRF did, and it was related to
the majority of the indicators studied, except for the markers of inflammation and
glucose levels. Additionally, the PMI turned out to be an indicator of easy determination
and application, which can corroborate or complement the clinical findings
that could be detected through the use of anthropometric indicators of daily use
in medical practice.
REFERENCES
Gracés-Hernández MJ, Klünder M, Garibay-Nieto N, López-Alvarenga JCL, Vilchis-Gil JV,Flores-Huerta SF, et al. Pediatric visceral adiposityindex adaptation correlates with HOMAIR, matsuda, and transaminases. Endocr Pract 2018;24:294-301. https://doi.org/10.4158/ep-2017-0086.
Garcés MJ, Hernández J, Queipo G, Klünder-Klünder M, Bustos M, Herrera A, et al. Novelgender-specific visceral adiposity index forMexican pediatric population. Rev Medica delHosp Gen de Mex 2014;77:153-159. https://doi.org/10.1016/j.hgmx.2014.10.002.
Amato MC, Giordano C, Galia M, CriscimannaA, Vitabile S, Midiri M, et al. Visceral adiposityindex: a reliable indicator of visceral fatfunction associated with cardiometabolic risk.Diabetes Care 2010;33:920-922. https://doi.org/10.2337/dc09-1825.
Amato MC, Giordano C, Pitrone M, Galluzzo A.Cut-off points of the visceral adiposity index (VAI)identifying a visceral adipose dysfunction associatedwith cardiometabolic risk in a Caucasian Sicilianpopulation. Lipids Health Dis 2011;10:183.https://doi.org/10.1186/1476-511x-10-183.
Knowles KM, Paiva LL, Sanchez SE, RevillaL, Lopez T, Yasuda MB, et al. Waist circumference,body mass index, and other measuresof adiposity in predicting cardiovascular diseaserisk factors among Peruvian adults. IntJ Hypertens 2011;2011:931402. https://doi.org/10.4061/2011/931402.
Hameed EK, AbdulQahar ZH. Visceral adiposityindex in female with type 2 diabetic mellitusand its association with the glycemic control.Diabetes Metab Syndr 2019;13:1241-1244.https://doi.org/10.1016/j.dsx.2019.01.039.
Bermúdez VJ, Salazar J, Añez R, Rivas-RíosJR, Chávez-Castillo M, Torres W, et al. Optimalcutoff for visceral adiposity index in a Venezuelanpopulation: Results from the Maracaibocity metabolic syndrome prevalence study. RevArgent Endocrinol Metab 2017;54:176-183.https://doi.org/10.1016/j.raem.2017.07.004.
Al-Daghri NM, Al-Attas OS, Alokail M,Alkharfy K, Wani K, Amer OE, et al. Does visceraladiposity index signify early metabolic riskin children and adolescents?: association withinsulin resistance, adipokines, and subclinicalinflammation. Pediatr Res 2014;75:459-463.https://doi.org/10.1038/pr.2013.229.
Pereira-Oliveira R, Remor JM, Matsuo AR,Dada RP, Mendes AA, Santos TL, et al. Índicede adiposidade visceral como preditor de riscocardiometabólico em crianças e adolescentes.Rev Bras Med Esporte 2017;23:222-226.
Amato MC, Giordano C. The current versionof the visceral adiposity index is not suitablefor application in pediatric populations: commentson the article by Al-Daghri et al. PediatrRes 2014;76:415. https://doi.org/10.1038/pr.2014.98.
The World Medical Association (WMA). Declaraciónde Helsinki de la AMM–Principios éticospara las investigaciones médicas en sereshumanos. Ferney-Voltaire, France: The WorldMedical Association; 2017. Acceso 05 de abrilde 2022. Disponible en https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-laamm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/.
Friedewald WT, Levy RI, Fredrickson DS.Estimation of the concentration of low-densitylipoprotein cholesterol in plasma, without useof the preparative ultracentrifuge. Clin Chem1972;18:499-502.
BioSystems. Manual del Usuario. Reagents &Instruments. Analizador semiautomático BTS350. Barcelona, España: BioSystems; 2010.Acceso 03 de mayo de 2022. Disponible enhttps://www.biosystems.com.co/productos/analizadores/analizador-semiautomaticobts-350/.
Pires-Rodríguez MC, Nava-Arias AV, LanzilliP. Síndrome metabólico: prevalencia y factoresde riesgo en escolares. Arch Venez Puer Ped2009;72:47-52.
Haffner SM, Miettinen H, Stern MP. The homeostasismodel in the San Antonio Heart Study.Diabetes Care 1997;20:1087-1092. https://doi.org/10.2337/diacare.20.7.1087.
Keskin M, Kurtoglu S, Kendirci M, AtabekME, Yazici C. Homeostasis model assessmentis more reliable than the fasting glucose/insulinratio and quantitative insulin sensitivity checkindex for assessing insulin resistance amongobese children and adolescents. Pediatrics2005;115:e500-503. https://doi.org/10.1542/peds.2004-1921.
World Health Organization (WHO). Physicalstatus: the use and interpretation of anthropometry.Report of a WHO Expert Committee. World Health Organ Tech Rep Ser1995;854:1-452.
Weiner JS, Lourie JA. Practical human biology.XV ed. London, New York: Academic Press;
1981. p. 439. Bib ID 1643436.19. Morales A. Primeras curvas de percentiles de lacircunferencia de cintura en un grupo de adolescentesdel estado Lara, Venezuela. Med Int
2010;26:174-181.20. Rodríguez MA, Sanz R, Mendoza J, et al.Adaptación de los puntos de corte del IV TaskForce para la clasificación de la presión arterialen niños, niñas y adolescentes venezolanos.Acta Cient Estud 2009;7:136-149.
Zimmet P, Alberti G, Kaufman F, Tajima N,Silink M, Arslanian S, et al. The metabolicsyndrome in children and adolescents. Lancet2007;369:2059-2061. https://doi.org/10.1016/s0140-6736(07)60958-1.
Martínez-Vargas AZ. Global youth tobaccosurvey en Huancayo, Lima, Trujillo y Tarapoto,Peru. Ginebra, Suiza: NCD Microdata Repository;2000. Acceso 08 de abril de 2022. Disponibleen https://extranet.who.int/ncdsmicrodata/index.php/catalog/444.
Godard C, Rodríguez MP, Díaz N, Lera L, SalazarG, Burrows R. Valor de un test clínicopara evaluar actividad física en niños. Rev MédChile 2008;136:1155-1162.
Acosta E. Obesidad, tejido adiposo y resistenciaa la insulina. Acta Bioquím Clín Latinoam2012;46:183-194.
Yusuf S, Hawken S, Ôunpuu S, Bautista L,Franzosi MG, Commerford P, et al. Obesityand the risk of myocardial infarction in 27 000participants from 52 countries: a case-controlstudy. The Lancet 2005;366:1640-1649. https://doi.org/10.1016/S0140-6736(05)67663-5.
Quijada Z, Paoli M, Zerpa Y, Camacho N, CichettiR, Villarroel V, et al. The triglyceride/HDL-cholesterol ratio as a marker of cardiovascularrisk in obese children; associationwith traditional and emergent risk factors. PediatrDiabetes 2008;9:464-471. https://doi.org/10.1111/j.1399-5448.2008.00406.x.