2021, Number 2
<< Back Next >>
Rev Cubana Med Trop 2021; 73 (2)
Detection of extended-spectrum β-lactamases in Escherichia coli isolated from freshwater ecosystems in Havana
Barroso GP, Bocourt PL, Lugo MD, Romeu ÁB
Language: Spanish
References: 29
Page: 1-13
PDF size: 379.31 Kb.
ABSTRACT
Introduction:
Extended-spectrum β-lactamase-producing Escherichia coli strains are multiresistant pathogens and one of the bacteria contributing most greatly to bacterial antibiotic resistance in clinical practice. However, they are increasingly isolated from natural environments, such as aquatic ecosystems, where they are used as fecal pollution indicators.
Objective:
Evaluate antibiotic susceptibility and extended-spectrum β-lactamase enzyme production in Escherichia coli isolates from freshwater ecosystems in Havana.
Methods:
An analysis was conducted of 43 E. coli isolates from the rivers Almendares, Quibú and Luyanó in Havana. Determination was made of susceptibility to 18 antibiotics and phenotypic production of extended-spectrum β-lactamases according to standards from the Clinical and Laboratory Standards Institute. Molecular detection of the enzymes was performed by polymerase chain reaction. Estimation was carried out of the antibiotic multiresistance index and the resistance patterns of each extended-spectrum E. coli β-lactamase isolate.
Results:
Of the E. coli isolates studied, 65% were resistant to at least one antibiotic, whereas 35% were sensitive to all antibiotics. The extended-spectrum β-lactamase phenotype was detected in seven isolates, of which four were carriers of the gene bla CTX-M-1 and three contained bla TEM. 37% of the E. coli isolates displayed antibiotic multiresistance index values below 0.22, 16% of 0.22, 9.3% above 0.5 and 5% above 0.7. ESBL E. coli isolates displayed co-resistance to the families tetracyclines, quinolones, aminoglycosides and macrolides.
Conclusions:
The presence of multiresistant extended-spectrum β-lactamase-producing environmental E. coli isolates in Havana freshwater ecosystems highlights the need to implement control strategies aimed at preventing the spread of these isolates in natural environments.
REFERENCES
Marti E, Jofre J, Balcazar JL. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS One. 2013;8(10).]
Haberecht HB, Nealon NJ, Gilliland JR, Holder AV, Runyan C, Oppel RC, et al. Antimicrobial-Resistant E. coli from environmental waters in northern Colorado. J Environ Public Health. 2019;1(1):1-13.]
Perry JA, Wright GD. The antibiotic resistance "mobilome": searching for the link between environment and clinic. Front Microbiol. 2013;4:1-6.]
Karkman A, Pärnänen K, Larsson DGJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10:1-8.]
Acevedo RL, Severiche CA, Jaimes J. Bacterias resistentes a antibióticos en ecosistemas acuáticos. Producción + Limpia. 2015;10 (2):160-72.]
Storteboom H, Davi S, Crimi B, Pruden A. Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ Sci Technol. 2010;44:1947-53.]
Leclerc H, Mossel DA, Edberg SC, Struijk CB. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol. 2001;55:201-34]
Rojas M, Monteiro R, Pizza M, Desvaux M, Rosini R. Intestinal pathogenic E. coli: Insights for vaccine development. Front Microbiol. 2018;9(440):1-10.]
Szmolka A, Nagy B. Multidrug resistant commensal E. coli in animals and its impact for public health. Front Microbiol. 2013;4.]
Dantas J, Neto HM. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon. 2020;6:1-20.]
Baquero F, Martinez J, Cantón R. Antibiotics and antibiotic resistance in water environments. Current Opinion Biotech. 2008;19(3):260-65.]
González L, Ramos A, Nadal L, Morffi J, Hernández E, Alvarez AB, et al. Identificación fenotípica y molecular de ß-lactamasas de espectro extendido TEM y SHV producidas por E. coli y Klebsiella spp. aislados clínicos en hospitales. Rev Cubana Med Trop. 2007;59(1):52-8.]
Romeu B, Salazar P, Lugo D, Rojas NM, Eslava CA. Susceptibilidad antimicrobiana de aislamientos de E. coli procedentes de ecosistemas dulceacuícolas. Rev Cubana Med Trop. 2012;64:132-41.]
Clinical and Laboratory Standards Institute (CLSI). Performance Standard for Antimicrobial Susceptibility Testing. Seventeenth Informational Supplement M100-S17. 2020;27(1).]
Krumperman PH. Multiple antibiotic resistance indexing of E. coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1)165-70.]
Cantón R. Lectura interpretada del antibiograma: una necesidad clínica. Enferm Infecc Microbiol Clin. 2010;28(6):375-85.]
Franz E, Veenman C, van Hoek A, Husman A, Blaak H. Pathogenic E. coli producing Extended-Spectrum ß-Lactamases isolated from surface water and wastewater. Sci Rep. 2015;5:1-9.]
González L, González MA, Zayas A, Curbelo M, Garrido Y. Relación genética de aislados clínicos de E. coli productores de ß-Lactamasas de Espectro Extendido (BLEE) en un hospital de la Habana, Cuba. Rev CENIC Ciencias Biológicas. 2017;48(3):107-12.]
Pereira E, Aboy L, Pulido JC. Uso de antimicrobianos en el servicio de medicina. Hospital General Docente Dr. Enrique Cabrera. Rev Habanera Ciencias Médicas. 2016;15(3):363-76.]
Mosquito S, Ruiz J, Bauer JL, Ochoa TJ. Mecanismos moleculares de resistencia antibiótica en E. coli asociadas a diarrea. Rev Peru Med Exp Salud Publica. 2011;28(4):648-56.]
Wellington E, Boxall B, Cross P, Williams P. The role of the natural environment in the emergence of antibiotic resistance in Gram negative bacteria. T Lan Infec Dis. 2013;13:155-65.]
Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167-76.]
Castañeda Y, López P, Figueroa R, Fuentes J. Susceptibilidad a antibióticos de bacterias indicadoras de contaminación fecal aisladas de aguas y sedimentos marinos de playas de la Isla de Margarita, Venezuela. Saber. 2009;21:12-9.]
Tesfaye H, Alemayehu H, Desta AF, Eguale T. Antimicrobial susceptibility profile of selected Enterobacteriaceae in wastewater samples from health facilities, abattoir, downstream rivers and a WWTP in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019;8(134):1-11.]
Delgado MCE, Tamez P, Gomez R, Zavala FJ, Eroza G, Nevaréz GV, et al. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico. Int J Environ Res Public Health. 2016;13(6):597-606.]
Tacao M, Moura A, Correia A, Henriques I. Co-resistance ti different classes of antibiotic among ESBL-producers from aquatic systems. Water Res. 2013;1(48):100-7.]
Gomes C, Ruiz-Roldán L, Mateu J, Ochoa TJ, Ruiz J. Azithromycin resistance levels and mechanisms in E. coli. Sci Rep. 2019;9:6089.]
Anastasi EM, Matthews B, Stratton HM, Katouli M. Pathogenic E. coli found in sewage treatment plants and environmental waters. Appl Environ Microbiol. 2012;78:5536-41.]
Graham DM, Olivares S, Knapp CW, Lima L, Werner D, Bowen E. Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol. 2011;45:418-24.]