2022, Number 3
<< Back Next >>
Rev Educ Bioquimica 2022; 41 (3)
Anticuerpos y nanocuerpos contra el SARS-COV-2
Lugo-Gil DC, Morales-Ríos E
Language: Spanish
References: 69
Page: 96-110
PDF size: 773.41 Kb.
ABSTRACT
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Millions of people
around the world have died due to this disease. SARS-CoV-2 uses its spike protein
(S) to enter the host cells through the receptor binding domain (RBD). RBD interacts
directly with human cells through the angiotensin converting enzyme 2 (ACE2) as
the first step in the virus infection process. RBD represents an object of study for
the antibody mediated neutralization of its interaction with ACE2. This review analyzes
the possible use of different antibodies and nanobodies that can neutralize the
interaction between the RBD domain of SARS-CoV-2 and ACE2. We found several
nanobodies candidates to be used alone or combined for the treatment of COVID-19,
which have proven useful in neutralizing the interaction of the virus with the ACE2
receptor found in human cells. Thus, stopping the replication cycle of the virus in
infected patients and helping to decrease viral loads during the development of the
disease and diminishes the probability of severe symptoms.
REFERENCES
Chen N, Zhou M, Dong X, Qu J, Gong F,Han Y, et al. Epidemiological and clinicalcharacteristics of 99 cases of 2019 novelcoronavirus pneumonia in Wuhan, China: adescriptive study. Lancet [Internet]. 2020Feb;395(10223):507–13. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0140673620302117
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, QiY, et al. Pathogenic T-cells and inflammatorymonocytes incite inflammatory storms insevere COVID-19 patients. Natl Sci Rev[Internet]. 2020 Jun 1;7(6):998–1002.Available from: https://academic.oup.com/nsr/article/7/6/998/5804736
Wilson N, Kvalsvig A, Barnard LT, Baker MG.Case-Fatality Risk Estimates for COVID-19Calculated by Using a Lag Time for Fatality.Emerg Infect Dis [Internet]. 2020 Jun;26(6).Available from: http://wwwnc.cdc.gov/eid/article/26/6/20-0320_article.htm
Ferretti L, Wymant C, Kendall M, ZhaoL, Nurtay A, Abeler-Dörner L, et al.Quantifying SARS-CoV-2 transmissionsuggests epidemic control with digitalcontact tracing. Science (80- ) [Internet].2020 May 8;368(6491):eabb6936. Availablefrom: https://www.sciencemag.org/lookup/doi/10.1126/science.abb6936
Astuti I, Ysrafil. Severe Acute RespiratorySyndrome Coronavirus 2 (SARS-CoV-2): Anoverview of viral structure and host response.Diabetes Metab Syndr Clin Res Rev [Internet].2020 Jul;14(4):407–12. Available from:https://linkinghub.elsevier.com/retrieve/pii/S1871402120300849
Pastrian-Soto G. Bases Genéticas yMoleculares del COVID-19 (SARS-CoV-2).Mecanismos de Patogénesis y de RespuestaInmune. Int J Odontostomatol [Internet].2020 Sep;14(3):331–7. Available from:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-381X2020000300331&lng=en&nrm=iso&tlng=en
Kaur N, Singh R, Dar Z, Bijarnia RK, DhingraN, Kaur T. Genetic comparison among variouscoronavirus strains for the identification ofpotential vaccine targets of SARS-CoV2. InfectGenet Evol [Internet]. 2021 Apr;89:104490.Available from: https://linkinghub.elsevier.com/retrieve/pii/S156713482030321X
McBride R, Fielding B. The Role of SevereAcute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in VirusPathogenesis. Viruses [Internet]. 2012 Nov7;4(11):2902–23. Available from: http://www.mdpi.com/1999-4915/4/11/2902
Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, etal. The role of furin cleavage site in SARSCoV-2 spike protein-mediated membranefusion in the presence or absence of trypsin.Signal Transduct Target Ther [Internet]. 2020Dec 12;5(1):92. Available from: http://www.nature.com/articles/s41392-020-0184-0
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al.Structure of the SARS-CoV-2 spike receptorbindingdomain bound to the ACE2 receptor.Nature [Internet]. 2020;581(7807):215–20.Available from: http://dx.doi.org/10.1038/s41586-020-2180-5
Yan R, Zhang Y, Li Y, Ye F, Guo Y, Xia L,et al. Structural basis for the differentstates of the spike protein of SARS-CoV-2in complex with ACE2. Cell Res [Internet].2021 Jun 18;31(6):717–9. Available from:http://www.nature.com/articles/s41422-021-00490-0
Wrapp D, Wang N, Corbett KS, GoldsmithJA, Hsieh CL, Abiona O, et al. Cryo-EMstructure of the 2019-nCoV spike in theprefusion conformation. Science (80- ).2020;367(6483):1260–3.
Hoffmann M, Kleine-Weber H, SchroederS, Krüger N, Herrler T, Erichsen S, et al.SARS-CoV-2 Cell Entry Depends on ACE2and TMPRSS2 and Is Blocked by a ClinicallyProven Protease Inhibitor. Cell [Internet].2020 Apr;181(2):271-280.e8. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0092867420302294
Zhao M-M, Yang W-L, Yang F-Y, Zhang L,Huang W-J, Hou W, et al. Cathepsin L plays akey role in SARS-CoV-2 infection in humansand humanized mice and is a promising targetfor new drug development. Signal TransductTarget Ther [Internet]. 2021 Dec 27;6(1):134.Available from: http://www.nature.com/articles/s41392-021-00558-8
Snijder EJ, Decroly E, Ziebuhr J. TheNonstructural Proteins Directing CoronavirusRNA Synthesis and Processing. In 2016.p. 59–126. Avai lable from: https://linkinghub.elsevier.com/retrieve/pii/S0065352716300471
Knoops K, Kikkert M, Worm SHE van den,Zevenhoven-Dobbe JC, van der Meer Y, KosterAJ, et al. SARS-Coronavirus Replication IsSupported by a Reticulovesicular Network ofModified Endoplasmic Reticulum. EmermanM, editor. PLoS Biol [Internet]. 2008 Sep16;6(9):e226. Available from: https://dx.plos.org/10.1371/journal.pbio.0060226
Masters PS. The Molecular Biology ofCoronaviruses. In 2006. p. 193–292. Availablefrom: https://linkinghub.elsevier.com/retrieve/pii/S0065352706660053
Harrison AG, Lin T, Wang P. Mechanismso f SARS-CoV- 2 Transmission andPathogenesis. Trends Immunol [Internet].2020 Dec;41(12):1100–15. Available from:https://linkinghub.elsevier.com/retrieve/pii/S1471490620302337
Xu H, Zhong L, Deng J, Peng J, Dan H, ZengX, et al. High expression of ACE2 receptorof 2019-nCoV on the epithelial cells of oralmucosa. Int J Oral Sci [Internet]. 2020 Dec24;12(1):8. Available from: http://www.nature.com/articles/s41368-020-0074-x
To KK-W, Tsang OT-Y, Leung W-S, Tam AR,Wu T-C, Lung DC, et al. Temporal profiles ofviral load in posterior oropharyngeal salivasamples and serum antibody responses duringinfection by SARS-CoV-2: an observationalcohort study. Lancet Infect Dis [Internet].2020 May;20(5):565–74. Available from:https://linkinghub.elsevier.com/retrieve/pii/S1473309920301961
Wölfel R, Corman VM, Guggemos W, SeilmaierM, Zange S, Müller MA, et al. Virologicalassessment of hospitalized patients withCOVID-2019. Nature. 2020;581(7809):465–9.
Hsueh P-R, Huang L-M, Chen P-J, Kao C-L,Yang P-C. Chronological evolution of IgM,IgA, IgG and neutralisation antibodiesafter infection with SARS-associatedcoronavirus. Clin Microbiol Infect [Internet].2004 Dec;10(12):1062–6. Available from:https://linkinghub.elsevier.com/retrieve/pii/S1198743X14638477
Long Q-X, Liu B-Z, Deng H-J, Wu G-C, DengK, Chen Y-K, et al. Antibody responses toSARS-CoV-2 in patients with COVID-19. NatMed [Internet]. 2020 Jun 29;26(6):845–8.Available from: http://www.nature.com/articles/s41591-020-0897-1
Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J,Yuan J, et al. Clinical and immunologicalassessment of asymptomatic SARS-CoV-2infections. Nat Med [Internet]. 2020 Aug18;26(8):1200–4. Available from: http://www.nature.com/articles/s41591-020-0965-6
Cevik M, Tate M, Lloyd O, Maraolo AE, SchafersJ, Ho A. SARS-CoV-2, SARS-CoV-1 andMERS-CoV Viral Load Dynamics, Duration ofViral Shedding and Infectiousness: A LivingSystematic Review and Meta-Analysis. SSRNElectron J [Internet]. 2020; Available from:https://www.ssrn.com/abstract=3677918
Grifoni A, Weiskopf D, Ramirez SI, Mateus J,Dan JM, Moderbacher CR, et al. Targets of TCell Responses to SARS-CoV-2 Coronavirusin Humans with COVID-19 Disease andUnexposed Individuals. Cell [Internet]. 2020Jun;181(7):1489-1501.e15. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0092867420306103
Gautret P, Lagier J-C, Parola P, Hoang VT,Meddeb L, Mailhe M, et al. Hydroxychloroquineand azithromycin as a treatment of COVID-19:results of an open-label non-randomizedclinical trial. Int J Antimicrob Agents [Internet].2020 Jul;56(1):105949. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0924857920300996
WHO. Coronavirus disease (COVID-19):Hydroxychloroquine [Internet]. 2021.Available from: https://www.who.int/newsroom/q-a-detail/coronavirus-disease-(covid-19)-hydroxychloroquine
Mitjŕ O, Corbacho-Monné M, Ubals M,Alemany A, Suńer C, Tebé C, et al. A Cluster-Randomized Trial of Hydroxychloroquinefor Prevention of Covid-19. N Engl J Med[Internet]. 2021 Feb 4;384(5):417–27.Available from: http://www.nejm.org/doi/10.1056/NEJMoa2021801
Gharbharan A, Jordans CCE, GeurtsvanKesselC, den Hollander JG, Karim F, MollemaFPN, et al. Effects of potent neutralizingantibodies from convalescent plasma inpatients hospitalized for severe SARS-CoV-2infection. Nat Commun [Internet]. 2021 Dec27;12(1):3189. Available from: http://www.nature.com/articles/s41467-021-23469-2
Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al.Potent binding of 2019 novel coronavirus spikeprotein by a SARS coronavirus-specific humanmonoclonal antibody. Emerg Microbes Infect[Internet]. 2020 Jan 1;9(1):382–5. Availablefrom: https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1729069
Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X,et al. Human neutralizing antibodies elicitedby SARS-CoV-2 infection. Nature [Internet].2020 Aug 26;584(7819):115–9. Availablefrom: http://www.nature.com/articles/s41586-020-2380-z
Wang C, Li W, Drabek D, Okba NMA, vanHaperen R, Osterhaus ADME, et al. A humanmonoclonal antibody blocking SARS-CoV-2infection. Nat Commun [Internet]. 2020 Dec4;11(1):2251. Available from: http://www.nature.com/articles/s41467-020-16256-y
Chen X, Li R, Pan Z, Qian C, Yang Y, You R,et al. Human monoclonal antibodies blockthe binding of SARS-CoV-2 spike protein toangiotensin converting enzyme 2 receptor.Cell Mol Immunol [Internet]. 2020 Jun20;17(6):647–9. Available from: http://www.nature.com/articles/s41423-020-0426-7
Steeland S, Vandenbroucke RE, Libert C.Nanobodies as therapeutics: big opportunitiesfor small antibodies. Drug Discov Today[Internet]. 2016 Jul;21(7):1076–113.Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644616301076
Smolarek D, Bertrand O, Czerwinski M.Variable fragments of heavy chain antibodies(VHHs): a new magic bullet molecule ofmedicine? Postepy Hig Med Dosw [Internet].2012 Jun 14;66:348–58. Available from:https://publisherspanel.com/icid/1000334
Muyldermans S, Baral TN, Retamozzo VC,De Baetselier P, De Genst E, Kinne J, et al.Camelid immunoglobulins and nanobodytechnology. Vet Immunol Immunopathol[Internet]. 2009 Mar;128(1–3):178–83.Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165242708004017
Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y,Bazirgan O, et al. Reshaping Antibody Diversity.Cell [Internet]. 2013 Jun;153(6):1379–93.Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867413005254
Dumoulin M, Conrath K, Van Meirhaeghe A,Meersman F, Heremans K, Frenken LGJ, et al.Single-domain antibody fragments with highconformational stability. Protein Sci [Internet].2009 Apr 13;11(3):500–15. Available from:http://doi.wiley.com/10.1110/ps.34602
Conrath K, Vincke C, Stijlemans B, SchymkowitzJ, Decanniere K, Wyns L, et al. Antigen Bindingand Solubility Effects upon the Veneering of aCamel VHH in Framework-2 to Mimic a VH. JMol Biol [Internet]. 2005 Jul;350(1):112–25.Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283605004845
Hussack G, Hirama T, Ding W, MacKenzieR, Tanha J. Engineered Single-DomainAntibodies with High Protease Resistanceand Thermal Stability. Mitraki A, editor. PLoSOne [Internet]. 2011 Nov 30;6(11):e28218.Available from: https://dx.plos.org/10.1371/journal.pone.0028218
Harmsen MM, Van Solt CB, Fijten HPD, VanSetten MC. Prolonged in vivo residence timesof llama single-domain antibody fragments inpigs by binding to porcine immunoglobulins.Vaccine [Internet]. 2005 Sep;23(41):4926–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X05005372
Huo J, Le Bas A, Ruza RR, Duyvesteyn HME,Mikolajek H, Malinauskas T, et al. Neutralizingnanobodies bind SARS-CoV-2 spike RBD andblock interaction with ACE2. Nat Struct MolBiol. 2020;27(9):846–54.
Vaneycken I, D’huyvetter M, Hernot S,De Vos J, Xavier C, Devoogdt N, et al.Immuno-imaging using nanobodies. Curr OpinBiotechnol [Internet]. 2011 Dec;22(6):877–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958166911006215
Peyvandi F, Scully M, Kremer HovingaJA, Knöbl P, Cataland S, De Beuf K, et al.Caplacizumab reduces the frequency of majorthromboembolic events, exacerbations anddeath in patients with acquired thromboticthrombocytopenic purpura. J Thromb Haemost[Internet]. 2017 Jul 5;15(7):1448–52.Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jth.13716
Detalle L, Stohr T, Palomo C, Piedra PA,Gilbert BE, Mas V, et al. Generation andCharacterization of ALX-0171, a Potent NovelTherapeutic Nanobody for the Treatmentof Respiratory Syncytial Virus Infection.Antimicrob Agents Chemother [Internet].2016 Jan;60(1):6–13. Available from: https://aac.asm.org/content/60/1/6
Li H, Wang S, He X, Li N, Yu F, Hu Y, et al.A novel nanobody specific for respiratorysurfactant protein A has potential for lungtargeting. Int J Nanomedicine [Internet].2015 Apr;2857. Available from: http://www.dovepress.com/a-novel-nanobody-specificfor-respiratory-surfactant-protein-a-has-potpeer-reviewed-article-IJN
Strauss M, Schotte L, Thys B, Filman DJ,Hogle JM. Five of Five VHHs NeutralizingPoliovirus Bind the Receptor-Binding Site.Dermody TS, editor. J Virol [Internet]. 2016Apr;90(7):3496–505. Available from: https://journals.asm.org/doi/10.1128/JVI.03017-15
Liu JL, Shriver-Lake LC, Anderson GP, ZabetakisD, Goldman ER. Selection, characterization,and thermal stabilization of llama singledomain antibodies towards Ebola virusglycoprotein. Microb Cell Fact [Internet]. 2017Dec 12;16(1):223. Available from: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-017-0837-z
Liu JL, Shriver-Lake LC, Zabetakis D, AndersonGP, Goldman ER. Selection and characterizationof protective anti-chikungunya virus singledomain antibodies. Mol Immunol [Internet].2019 Jan;105:190–7. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0161589018306710
Zhao G, He L, Sun S, Qiu H, Tai W, Chen J, etal. A Novel Nanobody Targeting Middle EastRespiratory Syndrome Coronavirus (MERSCoV)Receptor-Binding Domain Has PotentCross-Neutralizing Activity and ProtectiveEfficacy against MERS-CoV. Gallagher T,editor. J Virol [Internet]. 2018 Sep 15;92(18).Available from: https://journals.asm.org/doi/10.1128/JVI.00837-18
Stalin Raj V, Okba NMA, Gutierrez-Alvarez J,Drabek D, van Dieren B, Widagdo W, et al.Chimeric camel/human heavy-chain antibodiesprotect against MERS-CoV infection. SciAdv [Internet]. 2018 Aug 8;4(8):eaas9667.Available from: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aas9667
Gai J, Ma L, Li G, Zhu M, Qiao P, Li X, etal. A potent neutralizing nanobody againstSARS-CoV-2 with inhaled delivery potential.MedComm [Internet]. 2021 Mar 4;2(1):101–13. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mco2.60
Wrapp D, De Vlieger D, Corbett KS, Torres GM,Wang N, Van Breedam W, et al. Structural Basisfor Potent Neutralization of Betacoronavirusesby Single-Domain Camelid Antibodies. Cell[Internet]. 2020 May;181(5):1004-1015.e15.Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420304943
Chi X, Liu X, Wang C, Zhang X, Li X, Hou J,et al. Humanized single domain antibodiesneutralize SARS-CoV-2 by targeting thespike receptor binding domain. Nat Commun[Internet]. 2020 Dec 10;11(1):4528. Availablefrom: http://www.nature.com/articles/s41467-020-18387-8
Hanke L, Vidakovics Perez L, Sheward DJ, DasH, Schulte T, Moliner-Morro A, et al. An alpacananobody neutralizes SARS-CoV-2 by blockingreceptor interaction. Nat Commun [Internet].2020 Dec 4;11(1):4420. Available from:http://www.nature.com/articles/s41467-020-18174-5
Esparza TJ, Martin NP, Anderson GP, GoldmanER, Brody DL. High affinity nanobodiesblock SARS-CoV-2 spike receptor bindingdomain interaction with human angiotensinconverting enzyme. Sci Rep [Internet]. 2020Dec 22;10(1):22370. Available from: http://www.nature.com/articles/s41598-020-79036-0
Koenig P-A, Das H, Liu H, Kümmerer BM,Gohr FN, Jenster L-M, et al. Structureguidedmultivalent nanobodies block SARSCoV-2 infection and suppress mutationalescape. Science (80- ) [Internet]. 2021 Feb12;371(6530). Available from: https://www.science.org/doi/10.1126/science.abe6230
Tai W, Zhang X, He Y, Jiang S, Du L.Identification of SARS-CoV RBD-targetingmonoclonal antibodies with cross-reactiveor neutralizing activity against SARS-CoV-2.2020;(January).
Pinto D, Park Y-J, Beltramello M, WallsAC, Tortorici MA, Bianchi S, et al. Crossneutralizationof SARS-CoV-2 by a humanmonoclonal SARS-CoV antibody. Nature[Internet]. 2020 Jul 9;583(7815):290–5.Available from: http://www.nature.com/articles/s41586-020-2349-y
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, etal. A human neutralizing antibody targets thereceptor-binding site of SARS-CoV-2. Nature[Internet]. 2020 Aug 26;584(7819):120–4.Available from: http://www.nature.com/articles/s41586-020-2381-y
Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L,et al. Potent Neutralizing Antibodies againstSARS-CoV-2 Identified by High-ThroughputSingle-Cell Sequencing of ConvalescentPatients’ B Cells. Cell [Internet]. 2020Jul;182(1):73-84.e16. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0092867420306206
Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, etal. A noncompeting pair of human neutralizingantibodies block COVID-19 virus binding toits receptor ACE2. Science (80- ) [Internet].2020 Jun 12;368(6496):1274–8. Availablefrom: https://www.sciencemag.org/lookup/doi/10.1126/science.abc2241
Zeng X, Li L, Lin J, Li X, Liu B, Kong Y,et al. Isolation of a human monoclonalantibody specific for the receptor bindingdomain of SARS-CoV-2 using a competitivephage biopanning strategy. Antib Ther[Internet]. 2020 Apr 30;3(2):95–100.Available from: https://academic.oup.com/abt/article/3/2/95/5827124
Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, etal. Identification of Human Single-DomainAntibodies against SARS-CoV-2. Cell HostMicrobe [Internet]. 2020 Jun;27(6):891-898.e5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S193131282030250X
Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z,Duprex WP, et al. Versatile and multivalentnanobodies efficiently neutralize SARSCoV-2. Science (80- ) [Internet]. 2020 Nov5;eabe4747. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abe4747
Schoof M, Faust B, Saunders RA, SangwanS, Rezelj V, Hoppe N, et al. An ultrapotentsynthetic nanobody neutralizes SARS-CoV-2by stabilizing inactive Spike. Science (80- )[Internet]. 2020 Nov 5;eabe3255. Availablefrom: https://www.sciencemag.org/lookup/doi/10.1126/science.abe3255
Xu J, Xu K, Jung S, Conte A, LiebermanJ, Muecksch F, et al. Nanobodies fromcamelid mice and llamas neutralize SARSCoV-2 variants. Nature [Internet]. 2021Jul 8;595(7866):278–82. Available from:http://www.nature.com/articles/s41586-021-03676-z
Pymm P, Adair A, Chan L-J, Cooney JP, MordantFL, Allison CC, et al. Nanobody cocktailspotently neutralize SARS-CoV-2 D614G N501Yvariant and protect mice. Proc Natl Acad Sci[Internet]. 2021 May 11;118(19). Availablefrom: https://pnas.org/doi/full/10.1073/pnas.2101918118