2022, Number 3
<< Back Next >>
An Med Asoc Med Hosp ABC 2022; 67 (3)
The immunologic response to neurotrauma: implications for anesthesiology
Espino-Núñez JS, Grajeda-Gómez A, Figueroa-Morales A, Medina-Pérez ME
Language: Spanish
References: 52
Page: 195-199
PDF size: 259.34 Kb.
ABSTRACT
Traumatic brain injury is a significant public health problem. The neuro-immune relationship is altered with trauma which can unchain an innate immunologic response at the local and systemic levels risking the patients favorable outcome. The objective of this review is to describe immunologic reactions observed in traumatic brain injuries and relate them with how anesthetic interventions could modulate them.
REFERENCES
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18 (1): 56-87.
Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017; 16 (12): 987-1048.
Roozenbeek B, Maas AIR, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013; 9 (4): 231-236.
Norton R, Kobusingye O. Global Health: Injuries. N Engl J Med. 2014; 368: 1723-1730. Available in: https://www.nejm.org/doi/full/10.1056/NEJMra1109343
Mayén Casas JC, Guerrero Torres N, Caro Lozano J, Zúñiga Carrasco IR. Aspectos clínicos y epidemiológicos del trauma craneo-encefálico en México. Boletín Epidemiol Secr Salud-Mexico. 2008; 25: 27.
Carrillo-Esper R, Meza-Márquez JM. Trauma craneoencefálico. Rev Mex Anest. 2015; 38: 433-43. Available in: http://www.medigraphic.com/rmawww.medigraphic.org.mx
Singhal NS, Sun CH, Lee EM, Ma DK. Resilience to injury: a new approach to neuroprotection? Neurotherapeutics. 2020; 17 (2): 457-474.
Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci. 2015; 35 (2): 583-588.
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464 (7285): 104-107.
McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016; 7: 556.
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018; 19 (03): 327-341. Available from: http://www.nature.com/articles/s41590-018-0064-8
Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci. 2020; 21 (3): 139-152.
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012; 12 (9): 623-635.
Makinde HM, Cuda CM, Just TB, Perlman HR, Schwulst SJ. Nonclassical monocytes mediate secondary injury, neurocognitive outcome, and neutrophil infiltration after traumatic brain injury. J Immunol. 2017; 199 (10): 3583-3591. Available in: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1700896
Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien). 2017; 159 (2): 209-225.
Yates AG, Anthony DC, Ruitenberg MJ, Couch Y. Systemic immune response to traumatic CNS injuries-are extracellular vesicles the missing link? Front Immunol. 2019; 10: 2723.
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B et al. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (10): 2614-2626.
Dickens AM, Tovar-Y-Romo LB, Yoo SW, Trout AL, Bae M, Kanmogne M et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal. 2017; 10 (473): eaai7696.
Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014; 384 (9952): 1455-1465. Available in: www.thelancet.com
Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev. 2018; 84: 316-324.
Bragge P, Synnot A, Maas AI, Menon DK, Cooper DJ, Rosenfeld J V et al. A state-of-the-science overview of randomized controlled trials evaluating acute management of moderate-to-severe traumatic brain injury. J Neurotrauma. 2016; 33 (16): 1461-1478.
Frugier T, Morganti-Kossmann MC, O'Reilly D, McLean CA. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma. 2010; 27 (3): 497-507.
Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014; 31 (7): 618-629. Available from: http://online.liebertpub.com/doi/abs/10.1089/neu.2013.3087
24. Gall LS, Vulliamy P, Gillespie S, Jones TF, Pierre RSJ, Breukers SE et al. Comment on The S100A10 pathway mediates an occult hyperfibrinolytic subtype in trauma patients. Ann Surg. 2020; 271(4): e110-e111. doi: 10.1097/SLA.0000000000003690
Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard JF, Zarychanski R et al. Predictive value of S-100β protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ. 2013; 346: f1757. Available in: http://www.bmj.com/permissionsSubscribe:http://www.bmj.com/subscribe
CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019; 394 (10210): 1713-1723.
Sharma R, Shultz SR, Robinson MJ, Belli A, Hibbs ML, O'Brien TJ et al. Infections after a traumatic brain injury: the complex interplay between the immune and neurological systems. Brain Behav Immun. 2019; 79: 63-74.
Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017; 20 (2): 156-166.
Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005; 6 (10): 775-786.
Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multi-organ dysfunction following severe traumatic brain injury: epidemiology, mechanisms, and clinical management. Chest. 2021; 160 (3): 956-964.
Rizoli SB, Jaja BNR, Di Battista AP, Rhind SG, Neto AC, da Costa L et al. Catecholamines as outcome markers in isolated traumatic brain injury: the COMA-TBI study. Crit Care. 2017; 21 (37): 1-10.
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ et al. Beyond the Brain: peripheral interactions after traumatic brain injury. J Neurotrauma. 2020; 37 (5): 770-781.
Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA et al. Role of interleukin-10 in acute brain injuries. Front Neurol. 2017; 8: 244.
Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016; 13: 40.
Di Battista AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated Brain injury. Shock. 2016; 46 (3S): 96-103.
Maegele M, Aversa J, Marsee MK, McCauley R, Chitta SH, Vyakaranam S et al. Changes in coagulation following Brain injury. Semin Thromb Hemost. 2020; 46 (2): 155-166.
Wang X, Ji J, Fen L, Wang A. Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Inj. 2013; 27: 1617-1622. Available in: http://informahealthcare.com/bij
Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP et al. Dexmedetomidine produces its neuroprotective effect via the α 2A-adrenoceptor subtype. Eur J Pharmacol. 2004; 502 (1-2): 87-97.
Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E et al. The effect of the 2-Agonist Dexmedetomidine and the N-Methyl-D-Aspartate antagonist s(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analog. 2003; 96 (2): 524-531.
Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 2012; 12: 20.
Dahmani S, Paris A, Jannier V, Hein L, Rouelle D, Scholz J et al. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an α2-adrenoceptor- independent mechanism: Evidence for the involvement of imidazoline I1 receptors. Anesthesiology. 2008; 108 (3): 457-466.
Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010; 54 (6): 710-716.
Wang Y, Han R, Zuo Z. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage. Br J Anaesth. 2016; 116 (3): 384-392.
Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014; 21 (1): 163-173. Available in: http://dx.doi.org/10.1016/j.jcrc.2014.05.024
Bell JD. In vogue: ketamine for neuroprotection in acute neurologic injury. Anesth Analg. 2017; 124 (4): 1237-1243. Available in: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000539-900000000-97733
Alali AS, Mukherjee K, McCredie VA, Golan E, Shah PS, Bardes JM et al. Beta-blockers and traumatic brain injury. In: American Surgical Association. Annals of surgery. Lippincott Williams and Wilkins; 2017. pp. 952-961.
Coppola S, Froio S, Chiumello D. Β-Blockers in critically ill patients: from physiology to clinical evidence. Crit Care. 2015; 19 (1): 119. doi: 10.1186/s13054-015-0803-2
Heffernan DS, Inaba K, Arbabi S, Cotton BA. Sympathetic hyperactivity after traumatic brain injury and the role of beta-blocker therapy. J Trauma. 2010; 69 (6): 1602-1609. doi: 10.1097/TA.0b013e3181f2d3e8.
Ley EJ, Park R, Dagliyan G, Palestrant D, Miller CM, Conti PS et al. In vivo effect of propranolol dose and timing on cerebral perfusion after traumatic brain injury. J Trauma Inj Infect Crit Care. 2010; 68 (2): 353-356. Available from: https://insights.ovid.com/crossref?an=00005373-201002000-00015
Patel MB, McKenna JW, Alvarez JAM, Sugiura A, Jenkins JM, Guillamondegui OD et al. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012; 13: 177.
Ley EJ, Leonard SD, Barmparas G, Dhillon NK, Inaba K, Salim A et al. Beta blockers in critically ill patients with traumatic brain injury: results from a multicenter, prospective, observational american association for the surgery of trauma study. J Trauma Acute Care Surg. 2018; 84 (2): 234-244.
Khalili H, Ahl R, Paydar S, Sjolin G, Cao Y, Abdolrahimzadeh Fard H et al. Beta-blocker therapy in severe traumatic brain injury: a prospective randomized controlled trial. World J Surg. 2020; 44 (6): 1844-1853.
EVIDENCE LEVEL
III