2022, Number S2
Positioning document: use of inhaled sedation in the critically ill patient
Carrillo-Esper R, Velarde PAA, Zepeda MAD, Arellano RA, Pérez CA, Mendoza PCÚ, López ME, Nava LJ, Sánchez MJR, Elizalde GJJ, Sandoval GJL, Cerda AJM, Mijangos MJC, González MKI, Cetina CMA, Suárez MM, Márquez MP, Ayala LM, Pánfilo RNG, Islas ÁRE, Cabello AR, Landeros CRA, Tzompantzi FR, Aldrete VJ, Enríquez RMS, Pinal GJC, Arias LA
Language: Spanish
References: 107
Page: s43-64
PDF size: 464.55 Kb.
ABSTRACT
For intensivists, sedation is an extremely common and fundamental activity within the intensive care unit for the proper care of critical patients. Within this activity, one of the promising options is the use of inhaled sedation with the use of volatile anesthetic agents such as sevoflurane, desflurane or isoflurane, it is growing with promising results in providing the patient with faster extubation times and greater cardiovascular stability. The one with the greatest use and the most evidence is isoflurane. The use of volatile agents within the Intensive Care Unit still requires staff training and acceptance. There are two methods of administering inhaled sedation: MIRUS and Sedaconda ACD or AnaConDa, the latter being the most widely used because it allows reflection efficiency and has a small dead space, which allows use in ventilators even with small tidal volumes. The use of inhaled sedation has been shown to be useful as an alternative to deep intravenous sedation in a number of cases. Compared to conventional sedatives used in the Intensive Care Unit (propofol, midazolam, etc.), inhaled sedation provides safe sedation, which can be used for long periods of time, lacks accumulation, which allows faster awakenings with good hemodynamic safety. and with less association with the development of delirium, however, more studies are required on its use in critically ill patients.
REFERENCES
Jerath A, Ferguson ND, Steel A, et al. The use of volatile anesthetic agents for long-term critical care sedation (VALTS): study protocol for a pilot randomized controlled trial. Trials. 2015;16:560.
Jerath A, Parotto M, Wasowicz M, et al. Volatile anesthetics. Is a new player emerging in critical care sedation? Am J Respir Crit Care Med. 2016;193:1202-1212.
Meiser A. Inhaled sedation in the intensive care unit. Wiesbaden: Springer Fachmedien Wiesbaden; 2019 p. 1-8.
Jerath A, Ferguson ND, Cuthbertson B. Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensive Care Med. 2020;46:1563-1566.
Ponsonnard S, Cros J, Nathan N. Anestésicos halogenados. EMC Anestesia-Reanimación. 2014;40:1-23
Roullet S, Biais M, Sztark F. Absorción y distribución de los anestésicos halogenados. EMC Anestesia-Reanimación. 2010;36:1-6.
Bomberg H, Volk T, Groesdonk HV, Meiser A. Efficient application of volatile anaesthetics: total rebreathing or specific reflection? J Clin Monitor Comp. 2018;32:615-622.
Meiser A, Laubenthal H. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol. 2005;19:523-538.
Bomberg H, Groesdonk HV, Bellgardt M, et al. AnaConDaTM and MirusTM for intensive care sedation, 24 h desflurane versus isoflurane in one patient. Springerplus. 2016;5:420.
Mo J. Inhalation sedation: a systematic review and meta-analysis. J Acute Care Surg. 2019;9:45-53.
Satyajeet Misra and Thomas Kosh. A review of the practice of sedation with inhalational anaesthetics in the intensive care unit with the AnaConDa® device. Indian J Anaesth. 2012;56:518-523.
Caballero-López J., García-Sanchez, M., Giménez-Esparza, C. Protocolo de sedación inhalatoria en UCI. Recomendaciones del grupo de trabajo de sedación, analgesia y delirium de la Sociedad Española de Medicina Intensiva, Crítica Y Unidades Coronarias (SEMICYUC). Obtenido de https://semicyuc.org/wp-content/uploads/2020/05/PROTOCOLO-DE-SEDACIO%CC%81N-INHALATORIA-SEMICYUC-v.2.pdf
Celis-Rodríguez E, Díaz-Cortés JC, Cárdenas-Bolívar YR, et al. Guías de práctica clínica basadas en la evidencia para el manejo de la sedoanalgesia y delirium en el paciente adulto críticamente enfermo. Med Intensiva. 2020;44:171-184.
Sackey P, Eriksson L, Martling C, et al. Case scenario: tailored sedation to the individual needs of the intensive care unit patient. Anesthesiology. 2010;113:1439-1446.
Payen J. Toward tailored sedation with halogenated anesthetics in the intensive care unit? Anesthesiology. 2010;113:1268-1269.
Cuesta A, Llorente de la Fuente A. Sedación inhalatoria en cuidados intensivos. Anales de Pediatría Continuada. 2014;12:142-146.
Overview | Sedaconda ACD-S for sedation with volatile anaesthetics in intensive care | Guidance | NICE. Nice.org.uk. 2022. Available in: https://www.nice.org.uk/guidance/mtg65
Jerath A, Beattie S, Chandy T, et al. Volatile-based short-term sedation in cardiac surgical patients. Critical Care Medicine. 2015;43:1062-1069.
Jerath A, Panckhurst J, Parotto M, et al. Safety and efficacy of volatile anesthetic agents compared with standard intravenous midazolam/propofol sedation in ventilated critical care patients: a meta-analysis and systematic review of prospective trials. Anesth Analg. 2017;124:1190-1199.
Krannich A, Leithner C, Engels M, et al. Isoflurane sedation on the ICU in cardiac arrest patients treated with targeted temperature management. Critical Care Medicine. 2017;45:e384-e390.
Perbet S, Bourdeaux D, Lenoire A, et al. Sevoflurane for procedural sedation in critically ill patients: a pharmacokinetic comparative study between burn and non-burn patients. Anaesthesia Critical Care & Pain Medicine. 2018; 37:551-556.
Bryan Young G. Commentary on isoflurane in refractory and super-refractory status epilepticus. Neurocritical Care. 2021;35:611-612.
Baron R, Binder A, Biniek R, et al. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015) - short version. Ger Med Sci. 2015;13:Doc19.
Malcie Mesnil, Xavier Capdevila, Sophie Bringuier, et al. Long-term sedation in intensive care unit: a randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intens Care Med. 2011; 37:933-941.
López-Ramos JM, Gómez-Sainz JJ, Manzano-Canalechevarria A. Sevoflorane as adjuvant for sedation during mechanical ventilation in intensive care unit medical patients: Preliminary results of a series of cases. Colombian Journal of Anesthesiology. 2016;44:52-57.
Jerath A, Wong K, Wasowicz M, et al. Use of inhaled volatile anesthetics for longer term critical care sedation: a pilot randomized controlled trial. Crit Care Expo. 2020;2:e0281.
Suleiman A, Qaswal AB, Alnouti ME. Sedating mechanically ventilated COVID-19 patients with volatile anesthetics: insighs on te last-minute potential weapons. Sci Pharm. 2021;89:86.
Ramírez García H. Cerda Arteaga JM, Chávez Pérez C, et al. Sedación con sistema AnaConDa en pacientes COVID-19 crítico y su impacto en días de ventilación mecánica. Med Crit. 2022;36:138-141.
Bellgardt M, Bomberg H, Herzog-Niescery J, et al. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients: retrospective analysis. Eur J Anaesthesiol. 2016;33:6-13.
Krannich A, Leithner C, Engels M, et.al. Isoflurane sedation on the ICU in cardiac arrest patients treated with targeted temperature management: an observational propensity-matched study. Crit Care Med. 2017;45(4):e384-e390.
Zorrila A, Nuñez R, Torres V, et al. The impact of volatile anesthetics choice on postoperative outcomes of cardiac surgery: a meta-analysis. Biomed Res Int. 2017;2017:7073401.
Freiermuth D, Mets B, Bolliger D, et al. Sevoflurane and isoflurane-pharmacokinetics, hemodynamic stability, and cardioprotective effects during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2016;30:1494-1501.
Dabrowski W, Rzecki Z, Czajkowski M, et al. Volatile anesthetics reduce biochemical markers of brain injury and brain magnesium disorders in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2012;26:395-402.
Schoen J, Husemann L, Tiemeyer C, et al. Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth. 2011;106:840-850.
Gregoretti C, Decaroli D, Piacevoli Q, et al. Analgo-sedation of patients with burns outside the operating room. Drugs. 2008;68:2427-2443.
Jabaudon M, Boucher P, Imhoff E, et al. Sevoflurane for sedation in acute respiratory distress syndrome. a randomized controlled pilot study. Am J Respir Crit Care Med. 2017;195:792-800.
Jaehde U, Sörgel F. Clinical pharmacokinetics in patients with burns. Clin Pharmacokinet. 1995;29:15-28.
Perbet S et al. Sevoflurane for procedural sedation in critically ill patients: A pharmacokinetic comparative study between burn and non-burn patients. Anaesth Crit Care Pain Med. 2018;37:551-556.
Chung W, Park S, Hong J, et al. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors. Pediatr Anesth. 2015;25:1033-1045.
Satomoto M, Satoh Y, Terui K, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 2009;110:628-637.
Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116:372-384.
Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev. 2006;82:257-266.
Silbereis JC, Pochareddy S, Zhu Y, et al. The cellular and molecular landscapes of the developing human central nervous system. Neuron. 2016;89:248-268.
Meredith RM. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neuro develop mental disorders. Neurosci Biobehav Rev. 2015;50:180-188.
Lee S, Chung W, Park H, et al. Single and multiple sevoflurane exposures during pregnancy and offspring behavior in mice. Paediatr Anaesth. 2017;27:742-751.
Tobias JD. Therapeutic application and uses of inhalational anesthesia in the pediatric intensive care unit. Pediatr Crit Care Med. 2008;9:169-179.
Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isofluorane delivered by the AnaConDa. Paediatr Anaesth. 2005;15:879-885.
Arnold JH, Truog RD, Rice SA. Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg. 1993;76:520-526.
Eifinger F, Hünseler C, Roth B, et al. Oberthuer A, Mehler K. Observations on the effects of inhaled isoflurane in long-term sedations sedation of critically ill children using a modified AnaConda system. Klin Padiatr. 2013;225:206-211.
Farell R, Oomen G, Carey P. A technical review of the history development and performance of the anesthetic conserving device AnaConDa for delivering volatile anaesthetic in intendive and post-operative critical care. J Clin Monit Comput. 2018;32(4):595-604.
Turner DA, Heitz D, Cooper MK, et al. Isoflurane for life-threatening bronchospasm: a 15 year single center experience. Respir Care. 2012;57:1857-1864.
Shutte D, Zwitserloot AM, Houmes R, et al. Sevoflurane therapy for life-threatening asthma in children. Br J Anaesth. 2013;111:967-970.
Delgado- Escueta AV, Waterline C, Treiman DM. Management of status epilepticus. N Engl J Med. 1982;306:1337-1340.
Haafiz A, Kisson N. Status epilepticus: current concepts. Pediatr Emerg Care. 1999;15:119-129.
Kofke WA, Snider MT, Young SR. Prolonged low flow isoflurane anesthesia for status epilepticus. Anesthesiology. 1985;62:653-656.
Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevofluorane, isofluorane, halothane and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics. Anesthesiology. 2001;94:223-229.
Hirshman CA, Edelstein G, Peetz S. Mechanism of action in inhalational anesthesia on airways. Anesthesiology. 1982;56:107-111.
Tobias JD. Tolerance, withdrawal and physical dependency after long-term sedation and analgesia in children in the pediatric intensive care unit. Crit Care Med. 2000;28:2122-2132.
Kong KL, Willatts SM. Isoflurane sedation in pediatric intensive care. Crit Care Med. 1995;23:1308-1309.
Goa KI, Noble S, Spencer CM. Sevoflurane in paediatric anaesthesia: a review. Pediatr Drugs. 1999;1:127-153.
Ferrando C, Aguilar G, Piqueras L, et al. Sevoflurane, but not propofol, reduces the lung inflammatory response and improves oxygenation in an acute respiratory distress syndrome model: a randomised laboratory study. Eur J Anaesthesiol. 2013;30:455-463.
Suter D, Spahn DR, Blumenthal S, et al. The inmunommodulatory effect of sevoflurane in endotoxin-injured alveolar epithelial cells. Anesth Analg. 2007;104:638-645.
Yue T, Roth Z'graggen B, Blumenthal S, et al. Postconditioning with a volatile anaesthetic in alveolar epithelial cells in vitro. Eur Respir J. 2008;31:118-125.
Helmy SA, Al-Attiyah RJ. The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients. Anaesthesia. 2001; 56: 4-8.
Voigtsberger S, Lachmann RA, Leutert AC, et al. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. 2009;111:1238-1248.
Lee HT, Ota-Setlik A, Fu Y, et al. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology. 2004;101:1313-1324.
Giraud O, Seince PF, Rolland C, et al. Halothane reduces the early lipopolysaccharide-induced lung inflammation in mechanically ventilated rats. Am J Respir Crit Care Med. 2000;162:2278-2286.
Obal D, Rascher K, Favoccia C, et al. Post-conditioning by a short administration of desflurane reduced renal reperfusion injury after differing of ischaemia times in rats. Br J Anaesth. 2006;97:783-791.
Hashiguchi H, Morooka H, Miyoshi H, et al. Isoflurane protects renal function against ischemia and reperfusion through inhibition of protein kinases, JNK and ERK. Anesth Analg. 2005;101:1584-1589.
Kim M, Ham A, Kim JY, et al. The volatile anesthetic isoflurane induces ecto-59-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury. Kidney Int. 2013;84:90-103.
Urner M, Limbach LK, Herrmann IK, et al. Fluorinated groups mediate the immunomodulatory effects of volatile anesthetics in acute cell injury. Am J Respir Cell Mol Biol. 2011;45:617-624.
Asgeri M, Ahmadpour F, Negargar S, et al. The comparative myocardial protection by propofol and isoflurane in an in vivo model of ischemia reperfusion. Semin Cardiothorac Vasc Anesth. 2011;15:56-65.
Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology. 1997;86:188-195.
Bland JHL, Lowenstein E. Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology. 1976;45:287-293.
Sturesson LW, Malmkvist G, Bodelsson M, et al. Carbon Dioxide rebreathing with the anesthetic conserving device, AnaConDa®. Br J Anesth. 2012;109:279-283.
Sturesson LW, Bodelsson M, Jonson B, et al. Anesthetic conserving device AnaConDa: dead space effect and significance for lung protective ventilation. Br J Anesth. 2014;113:508-514.
Kersten JR, Schmeling TJ, Pagel PS, et al. Isoflurane mimics ischemic preconditioning via activation of K (ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology. 1997;87:361-370.
Soh S, Song JW, Choi N, et al. Anesthetic-induced myocardial protection in cardiac surgery: relevant mechanisms and clinical translation. Anesth Pain Med. 2018;13:1-9.
Pagel SP. Myocardial protection by volatile anesthetics in patients undergoing cardiac surgery: a critical review of the laboratory and clinical evidence. J Cardiothorac Vasc Anesth. 2013;27:972-982.
Dharmalingam SK, Amirtharaj GJ, Ramachandran A, et al. Volatile anesthetic preconditioning modulates oxidative stress and nitric oxide in patients undergoing coronary artery bypass grafting. Ann Card Anaesth. 2021;24:319-326.
Mandke A, Sarkar M, Deshpande C, et al. Newer volatile anesthetic agents in cardiac anesthesia: review of literature. J Card Crit Care. 2021;5:54-59.
Zhong C, Qiu H, Chen J, et al. Effects of volatile anesthetic preconditioning on expression of NFK B-regulated genes in aged rat myocardium. J Biomed Res. 2019;33:264-270.
Sepac A, Sedlic F, Si-Tayeb K, et al. Isoflurane preconditioning elicits competent endogenous mechanisms of protection from oxidative stress in cardiomyocytes derived from human embryonic stem cells. Anesthesiology. 2010;113:906-916.
Bonanni A, Signori A, Alicino C, et al. Volatile anesthetics versus propofol for cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2020;132:1429-1446.
Landoni G, Lomivorotov VV, Nigro Neto C, et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery. N Eng J Med. 2019;380:1214-1225.
Sellers D, Fedorko L. Myocardial preconditioning with volatile anesthetics: goodbye to all that? J Cardiothorac Vasc Anesth. 2020;34:3257-3258.
Panchal AR, Bartos JA, Cabañas JG, et al. Adult basic and advanced life support writing group. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S366-S468.
Brouns R, De Deyn PP. The complexity of neurobiological processes in acute stroke. Clin Neurol Neurosurg. 2009;111:483-495.
Sheng R, Chen J-L, Qin Z-H. Cerebral conditioning: mechanisms and potential clinical implications. Brain Hemorrhages. 2022;3:62-76.
Archer DP, Walker AM, McCann SK, et al. Anesthetic neuroprotection in experimental stroke in rodents. Anesthesiology. 2017;126:653-665.
Athiraman U, Jayaraman K, Liu M, et al. Role of endothelial nitric oxide synthase in isoflurane conditioning-induced neurovascular protection in subarachnoid hemorrhage. J Am Heart Assoc. 2020;9:e017477.
Pound P, Ram R. Are researches moving away from animal models as a result of poor clinical translation in the field of stroke? An analysis of opinion papers. BMJ Open Science. 2020;4:e100041.
Athiraman U, Dhar R, Jayaraman K, et al. Conditioning effect of inhalational anesthetics on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2021;88:394-401.
Kong KL, Tyler JE, Wilatts SM, et al. Isofluorane sedation for patient undergoing mechanical ventilation: metabolism to inorganic fluoride and renal effects. Br J Anesth. 1990;64:159-162.
Spencer EM, Wilatts SM, Prys-Roberts C. Plasma inorganic fluoride concentrations during and after prolonged (greater than 24 h) isofluorane sedation: effect on renal function. Anesth Analg. 1991;73:731-737.
Herzog-Niescery J, Seipp H-M, Weber TP, et al. Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review. J Clin Monit Comput. 2018;32:667-675.
Fraga M, Rama Marceira P, Rodino S, et al. The effect of isofluorane and desfluorane on intracraneal pressure, cerebral perfusion pressure, and cerebral arteriovenous oxygen content difference in normocapnic patient with supratentorial brain tumors. Anesthesiology. 2003;98:1085-1090.
Purrucker JC, Renzland J, Uhlmann L, et al. Volatile sedation with sevofluorane in intensive care patient with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anesth. 2015;114:934-943.
Sackey PV, Martling CR, Nise G, et al. Ambient isoflurane pollution and isoflurane consumption during intensive care unit sedation with the anesthetic conserving device. Crit Care Med. 2005;33:585-590.
Sackey PV, Martling CR, Granath F, et al. Prolonged isoflurane sedation of intensive care unit patients with the anesthetic conserving device. Crit Care Med. 2004;32:2241-2246.
Mattison MLP. Delirium. Ann Intern Med. 2020;173:Itc49-itc64.
Slooter AJC, Otte WM, Devlin JW, et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten societies. Intensive Care Med. 2020;46:1020-1022.
Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286:2703-2710.
Milbrandt EB, Deppen S, Harrison PL, et al. Costs associated with delirium in mechanically ventilated patients. Crit Care Med. 2004;32:955-962.
Munk L, Andersen G, Moller AM. Post-anaesthetic emergence delirium in adults: incidence, predictors and consequences. Acta Anaesthesiol Scand. 2016;60:1059-1066.
L'her E, Dy L, Pili R, et al. Feasibility and potential cost/benefit of routine isoflurane sedation using an anesthetic-conserving device: a prospective observational study. Respir Care. 2008;53(10):1295-303.
Bellgardt M, Ozcelik D, Breuer-Kaiser AFC, et al. Extracorporeal membrane oxygenation and inhaled sedation in coronavirus disease 2019-related acute respiratory distress syndrome. World J Crit Care Med. 2021;10:323-333.